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Summary. In an analysis of capture-recapture data, the identification of a model that fits is a critical step.
For the multisite (also called multistate) models used to analyze data gathered at several sites, no reliable test
for assessing fit is currently available. We propose a test for the JMV model, a simple generalization of the
Arnason-Schwarz (AS) model, in the form of interpretable contingency tables. For the AS model, we suggest
complementing the test for the JMV model with a likelihood ratio test of AS vs. JMV. The examination
of an example leads us to propose further a partitioning that emphasizes the role of the memory model
of Brownie et al. (1993 Biometrics 49, 1173–1187) as a biologically more plausible alternative to the AS
model.
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1. Introduction
One of the best sources of information on the dynamics of
natural populations is provided by the repeated observations
of animals that had been individually marked on their first
encounter (Seber, 1982; Lebreton, Pradel, and Clobert, 1993).
The analysis of such data must take into account the sampling
process, and rests on either hypergeometric or multinomial
sampling models (Robson, 1969; Robson and Youngs, 1971;
Pollock, 1975).

Essentially due to their computational ease, models of
the second type are more widely used. The monograph by
Lebreton et al. (1992) expounds a general procedure of anal-
ysis; the authors advocate as the first step the identification of
a model sufficiently general to adequately describe the data.
Since then, the recent emphasis on information-theoretic ap-
proaches to model selection (Burnham and Anderson, 1998)
has relieved the need for a global model, but the identifica-
tion of at least one model that fits the data remains critical.
However, reliable goodness-of-fit tests are not available for all
models, which is one of the major difficulties in conducting a
capture-recapture analysis.

Theoretically, an omnibus goodness-of-fit test could be con-
structed by comparing expected and observed numbers of an-
imals for each possible capture history. However, the number
of cells in such a comparison increases much more rapidly
with an increase in the number of sampling occasions k than
with an increase in the number of available animals. The
scarceness of data will rapidly (with k) make the implementa-
tion of this test problematic (though a parametric bootstrap
procedure could possibly be considered). Now, it is usually
reasonable to assume that animals with different capture his-
tories have some characteristics in common such as, for in-
stance, a common probability of surviving a given time in-

terval. It may then become possible to partition the data
into a smaller number of alternatives. A model for which a
goodness-of-fit test can be built in this way is the reference
model for a population inhabiting only one site (Cormack,
1964; Jolly, 1965; Seber, 1965)—specifically, the model which
assumes common survival over any time interval, and common
capture probability during each sampling occasion for every
animal, as well as independence of the fates of individuals.
The goodness-of-fit test for this reference model dates back to
Robson and Youngs (1971), Seber (1970), and Pollock, Hines,
and Nichols (1985), depending on the component consid-
ered. This test is divided up into components for which there
is a biological interpretation—thus providing good insight
into the data (Pradel, 1993; Pradel et al., 1997). Burnham
(1991) derives the goodness-of-fit test to the Cormack-Jolly-
Seber (CJS) model in an elegant manner which he calls
“peeling and pooling.”

In this article, we examine whether the peeling and pooling
method of Burnham (previously used by Robson, 1969) can be
extended to the AS model (Arnason, 1973), which is the direct
generalization of the CJS model to the multisite case. We first
expound the ideas behind the peeling and pooling method in
the unisite case, and then attempt the generalization. Finally,
an example is provided for illustration.

2. Definitions
We define a release batch, or simply batch, as the set of an-
imals released simultaneously. Because a given animal can
be captured more than once, it can belong to more than
one batch (we prefer the more neutral term “batch” to “co-
hort,” which has been used in the methodological literature
(Burnham et al., 1987), but has a different meaning in the
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biological literature). Within each batch, we distinguish sub-
batches of animals with the same previous capture history.

There are three main kinds of statistics used in this paper:
R denotes numbers released, r is the number eventually re-
captured among R, and m is the number recaptured among r
at a specific occasion and/or at a specific time interval.

These quantities are indexed by date and site according
to the following general rules: sites as superscripts, dates as
subscripts; when applicable departure is denoted on the left,
arrival is denoted on the right. For example, mlv

ij denotes the
number of animals which are released on occasion i at site l,
and are next recaptured on occasion j at site v. These rules for
notation also apply to the model parameters. The fundamen-
tal parameters are of two types: the probabilities of surviving
a time interval, denoted φ, and the probabilities of capture at
each occasion, denoted p.

3. The Peeling-Pooling Approach
3.1 The Reasons Why the Peeling-Pooling Method Works

in the Unisite Case
Among the assumptions of the CJS model, some relate to
the experimental techniques and need not concern us. Those
which have bearing on the model structure are:

� Every animal in the population has the same probability
pi of being caught in the ith sample, given that it is alive
and in the population when the sample is taken.

� Every marked animal has the same probability φi of sur-
viving from the ith to the (i + 1)th sample and of being
in the population at the time of the i + 1 sample, given
that it is alive and in the population immediately after
the ith release.

� Animals behave independently.

Based on the last assumption, Burnham (1991) starts by
showing that the CJS model lends itself naturally to the prod-
uct multinomial formalization embodied in the data summa-
rization called the “full m-array” (see Table 1) (Burnham
et al., 1987). However, if there are no constraints on the
cell probabilities of the product-multinomial—other than that
they sum to one for each multinomial—then the model is sat-
urated and no degrees of freedom are left for goodness-of-fit
testing. This is where the more specific assumptions of the
CJS model come into play: by rendering the cell probabil-
ities functions of a smaller number of survival and capture

Table 1
Full m-array with four occasions and one site. Each row

corresponds to an independent multinomial.

First recapture at j

Year Release j = 2 3 4

1 R1 m12 m13 m14
2 R2{0} m23{0} m24{0}
2 R2{1} m23{1} m24{1}
3 R3{00} m34{00}
3 R3{01} m34{01}
3 R3{10} m34{10}
3 R3{11} m34{11}

parameters. Accounting for these constraints, the likelihood
is factorized into one set of terms involving just parameters
and minimal sufficient statistics (MSS), and another set of
hypergeometric terms involving the MSS but not parameters.
By application of the factorization theorem (see, for instance,
Cox and Hinkley, 1974), it then becomes possible to derive
a goodness-of-fit test. Additionally, due to the properties of
the exponential family of distributions to which the multi-
nomial belongs, Burnham can conclude that, because their
dimensionality is that of the parameter space, the statistics
in the latter term of the factorization are MSS and hence
that the goodness-of-fit test is fully efficient. In fact, from a
biological point of view, the peeling and pooling method of
Burnham comes down to the application of one property that
summarizes the assumptions of the CJS model, and, from a
methodological point of view, to the repeated use of two tech-
nical tools.

Biological Property 1
All marked animals which are in the system at the same time
are indistinguishable.

The useful consequences of this property are that

� all multinomials in the likelihood have proportional cell
probabilities in the range of sampling dates they share,
and in particular,

� all subbatches of any given release batch share the same
cell probabilities.

The technical tools are the following properties of multino-
mial distributions.

Property 1
If V and V∗ are mutually independent, multinomially dis-
tributed stochastic vectors with the same number of cells and
the same values of cell probabilities, then the distribution of
V + V∗ is multinomial with the same number of cells and
the same cell probabilities, and the joint distribution of V and
V∗ conditional on V + V∗ is multivariate hypergeometric.
(In fact, this result generalizes to more than two stochastic
vectors.)

Property 2
If V and V∗ are mutually independent stochastic vectors multi-
nomially distributed with V = (W, U), where the subvector U
of V has the same number of cells as V∗ and proportional cell
probabilities, then the marginal distribution of W is multino-
mial and the conditional distribution of U given W is multino-
mial with the same values of cell probabilities as the distribution
of V∗.

The peeling and pooling method ensues from the interplay
of the above biological and methodological properties as illus-
trated in the diagram of Figure 1 (for details, see Burnham,
1991). It remains to be seen whether this method can be ap-
plied when observations are carried out over several sites.

3.2 The Peeling-Pooling Method in the Case of Several Sites
The assumptions of the AS model are similar to those of the
CJS model, except that they take the sites into account. Those
which have bearing on the model are:
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Figure 1. Schematic representation of the peeling-pooling
method applied to the CJS model with 5 time intervals. Each
row corresponds to a date of release, each column to a date
of first reobservation, the last column being for individuals
never seen again (dated 0). The multivariate hypergeometrics
set aside in step 1 concern subbatches within batches, and
constitute the component Test3 in Burnham et al. (1987).
The other hypergeometrics set aside in the following steps
constitute Test2. The shadowed binomials visible in the last
step plus the last collapsed multinomial (which is in fact a bi-
nomial) together represent the parametric part of the model.
There are 7 such binomials; the same number as the number
of identifiable parameters in the model.

Figure 2. Test3(i,l). For each batch (i,l) of releases at time i and site l, the subbatches are indistinguishable—leading to a
generalization of Test3 in the form of (k − 1)s contingency tables to be tested for homogeneity.

� Every animal in the population has the same probability
pl

i of being caught in the ith sample at site l, given that
it is alive and at site l when the sample is taken.

� Every marked animal present at site l and time i has
the same probability φlm

i of surviving from the ith to the
(i + 1)th sample, and of being at site m at the time of
the i + 1 sample.

� Animals behave independently.

Because the last assumption is unchanged, the likelihood
is still a product multinomial, but there are many more
multinomials than in the CJS model with the same num-
ber of capture occasions k. There is, in fact, one multinomial
per site, date of release, and previous capture history, i.e.,
(s + 1)k−1 − 1 where s is the number of monitored sites. Also,
each multinomial has more cells because the circumstances of
the first reobservation of a released animal must be classified
by site as well as by date. However, the key point is that
biological property 1 no longer holds. It must be amended
as follows.

Biological Property 2
All marked animals which are in the system at the same time
and at the same site are indistinguishable.

Of the two consequences derived previously, only the sec-
ond is maintained: all subbatches of any given release batch
share the same cell probabilities. Hence, step 1 of Figure 1
can still be conducted, leading to a generalization of Test3
(Test3G) as the sum of Test3(i, l)’s (see Figure 2). But the
peeling-pooling method stops there. For instance, as shown
in Table 2, after peeling off the recaptures at time 2 of ani-
mals released at time 1 and site 1 (batch(1,1)), the remaining
conditional multinomial does not compare to any multinomial
from releases at time 2 (batch(2,1) or batch(2,2)). The pool-
ing stage fails. The reason is that the exact location of an
animal released at time 1 and not captured at time 2 is then
unknown (Wintrebert, 1998). This animal could either have
been at site 1 or at site 2. Because it must be at one of the
two sites, it can be shown formally (see Appendix), and under-
stood intuitively, that the conditional multinomial stemming
from batch(1,1) is a mixture of those from batch(2,1) and
batch(2,2). This is an important general result that can be
phrased as:
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Table 2
Relationships among batches in the Arnason-Schwarz model:
the conditional multinomial in bold in the first row has cell

probabilities that differ from those of either of the bold
conditional multinomials in rows 3 and 4. However, it can be
shown that the conditional multinomial in row 1 is a mixture
of those in rows 3 and 4. (A similar statement can be made

about the multinomial in row 2.)

Time (j) and location (v)
of first recapture

j = 2 3 4

Year Site Release v = 1 2 1 2 1 2

1 1 R1
1 m11

12 m12
12 m11

13 m12
13 m11

14 m12
14

1 2 R2
1 m21

12 m22
12 m21

13 m22
13 m21

14 m22
14

2 1 R1
2 m11

23 m12
23 m11

24 m12
24

2 2 R2
2 m21

23 m22
23 m21

24 m22
24

3 1 R1
3 m11

34 m12
34

3 2 R2
3 m21

34 m22
34

Biological Property 3
A previously released animal alive and not captured at time i
behaves from this time onwards as an animal released at this
same time on one or another of the s sites.

As a consequence, for each batch released before time i −
1, the numbers of first reobservations starting at time i have a
conditional multinomial distribution that is a mixture of the
conditional multinomials over the same circumstances of first
reobservations arising from the batches of releases at time
i − 1 at the different sites. In exploiting this property, we
suggest a parallel test to Test2 of the unisite case (Burnham
et al., 1987) by relying on the following property of mixtures
of multinomials.

Figure 3. TestMi. The multinomial distributions of first reobservations, from the batches of releases at the different sites
at occasion i (batches (i, 1) to (i, s)), are bases for the mixture multinomial distributions of the first reobservations from
any previous batch (batch (u, l) with u < i, 1 < l < s), restricted to the same circumstances. We chose to pool the previous
batches over release times at each site, but other poolings may be considered. TestMi simultaneously tests that the pooled
data (first s rows) are mixtures of the bases (last s rows).

Property 3
If V and V∗ are mutually independent stochastic vectors multi-
nomially distributed, and if W and W∗ are mutually indepen-
dent stochastic vectors whose distributions are separately mix-
tures (not necessarily with the same mixing probability) of the
distributions of V and V∗, then the distribution of W + W∗ is
itself a mixture of the distributions of V and V∗.

It is thus possible to proceed as follows. The first step is to
simultaneously test whether the conditional multinomials of
first reobservations from time 3 onwards, from the s batches
released at time 1, are mixtures of the conditional multinomi-
als of first reobservations over the same circumstances from
the s batches released at time 2. The second step is to pool
the reobservations, starting at time 3 over batches released
at times 1 and 2, by site of release. The third step is to re-
peat step 1 to compare the pooled reobservations from time
4 onwards to the reobservations over the same circumstances
from the s batches released at time 3. Then, repeat steps 2
and 3 until there are no degrees of freedom left for testing for
mixtures.

The tests for mixtures, which together constitute TestM,
can be computed for i = 2, . . . , k − 2 (Figure 3). The pool-
ing of reobservations we propose is just one possible strategy,
partly inspired by the following example. Figure 4 presents
the method in a manner similar to that of Figure 1.

4. Characterizations of the AS and JMV Models
The AS model is characterized by the three properties given
at the beginning of Subsection 3.2. We have shown in the
previous section that a necessary consequence of these condi-
tions is that certain conditional multinomials are mixtures of
other conditional multinomials (a consequence of biological
property 3). However, this single property does not charac-
terize the AS model—but rather a more general model called
JMV by Brownie et al. (1993). In this section, we clarify the
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Figure 4. Schematic representation of the construction of
the test for mixtures when there are 4 time intervals and 2
sites. B(i, l) is the batch of releases at occasion i and site
l. Unlike in the unisite case, the comparison of conditional
multinomials across batches yields tests for mixture rather
than tests for homogeneity. Each time, the current release
batches play the role of bases.

relationships between the AS and JMV models and give two
useful characterizations. We start by giving a formal definition
of each model:

Definition 4.1: Among the multisite models with k
capture occasions and s sites, the AS model is the model
for which

� survival-movement probabilities depend only on the time
interval, site of departure, and site of arrival (notation
φlm
i ) and

� capture probabilities depend only on the occasion and site
of arrival (that is, where the capture actually takes place)
(notation pm

i ).
The JMV model is the model for which

� survival-movement probabilities depend only on the time
interval, site of departure, and site of arrival (notation
φlm
i ) and

� capture probabilities depend only on the occasion, site of
departure, and site of arrival (notation plm

i ).

Seber (1962) introduced a reparameterization of unisite
capture-recapture models in terms of products of the forms
α = φ × p and β = φ × (1 − p). For instance, in the context of
the CJS model, the new parameters are αi = φi × pi+1 (i =
1, . . . , k − 1), the probabilities of being recaptured at time
i + 1 for an individual still at risk of capture after occasion i,
and βi = φi × (1 − pi+1) (i = 1, . . . , k − 2), the probabilities
of remaining at risk of capture within the same batch, for an
individual still at risk of capture after occasion i.

This parameterization is more convenient than the (φ, p)
parameterization in some respects. For instance, it is well
known that in the CJS model φk−1 and pk are not separately
identifiable. This translates nicely in the (α,β) parameteriza-
tion: there is no β parameter with index k − 1. The (α,β)
parameterization extends easily to the multisite case by ac-
counting for the sites of departure and of arrival. With this
reparameterization, we have

Characterization 1
Among the multisite models with k capture occasions and s sites,
the AS model is the model for which

� α-probabilities depend only on the time interval, site of
departure, and site of arrival (notation αlm

i ) and
� β-probabilities depend only on the time interval, site of

departure, and site of arrival (notation β lm
i ) and, in

addition, ∀i, 1 ≤ i ≤ k − 2, ∀m, 1 ≤ m ≤ s, the ratio
βlm
i /αlm

i does not depend on l.
The JMV model is the model for which

� α-probabilities depend only on the time interval, site of
departure, and site of arrival (notation αlm

i ) and
� β-probabilities depend only on the time interval, site of

departure, and site of arrival (notation β lm
i ).

The JMV model has a simpler characterization than the
AS model in the (α, β) parameterization.

Finally, we make the link with the previous section by es-
tablishing that the property of mixture along with the prop-
erty of similarly distributed subbatches characterizes the JMV
model.

Characterization 2
Among the multisite models with k capture occasions and s sites,
the JMV model is the model such that

� all subbatches of the same batch are distributed with the
same cell probabilities and

� the conditional distribution of the first reobservations from
batch (i, l) (1 ≤ i ≤ k − 3, 1 ≤ l ≤ s), starting at
time i + 2, is a mixture of the conditional distributions
of the first reobservations from the s batches (i + 1, n),
n = 1, . . . , s over the same circumstances.

Proof. The line of reasoning followed in Section 3 and in
the Appendix for the AS model is valid without change for
the JMV model. Thus, the direct implication is established. It
remains to establish the converse. A model obeying the condi-
tions set in the characterization above is uniquely specified by
the following parameters: the cell probabilities πlm

i,i+1; 1 ≤ i ≤
k− 1, 1 ≤ l, m ≤ s; the probabilities of ever being seen again
λl
i, 1 ≤ i ≤ k − 2, 1 ≤ l ≤ s, and the mixture coefficients
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Table 3
Raw component (2,1) of Test3G for the Canada geese data. The individuals captured at occasion

2 and site 1 are sorted by location at time 1 (rows), and time and location of next recapture
(columns); in both cases, row or column, a “-” sign means no capture. For instance, among the
individuals captured at occasion 2 and site 1, 390 individuals had not been seen previously (the
row heading is a “-”) and were next recaptured at occasion 3 and site 1. The last column is for
individuals never seen again. Note that most individuals from this release batch have their last

previous and next future observation (if any) at the current site 1.

Subbatch
(location at time 1) Time (j) and location (v) of first recapture

j = 3 4 5 6 −
v = 1 2 3 1 2 3 1 2 3 1 2 3 −

− 390 124 0 122 64 3 46 35 3 18 9 0 920
1 75 3 0 21 4 0 5 2 0 1 0 0 128
2 19 6 0 4 3 0 0 2 0 1 3 0 47
3 7 1 0 2 0 0 0 3 0 1 1 0 9

γln
i , 1 ≤ i ≤ k − 2, 1 ≤ l ≤ s, 1 ≤ n ≤ s − 1 (see Appendix).

Obviously, αlm
i = πlm

i,i+1, 1 ≤ i ≤ k − 1, 1 ≤ l, m ≤ s.
Now, if this model is indeed JMV, the demonstration in
the Appendix indicates that, necessarily: γln

i = βln
i λ

n
i+1/

(λl
i −

∑s

m=1 α
lm
i ), 1 ≤ i ≤ k − 2, 1 ≤ l, n ≤ s. There is a

unique solution in terms of β’s: βln
i = γln

i (λl
i −

∑s

m=1 α
lm
i )/

λn
i+1, 1 ≤ i ≤ k − 2, 1 ≤ l, n ≤ s.
The conditions of characterization 1 for the JMV model are

thus fulfilled. The (α, λ, γ) parameterization is just another
parameterization of the JMV model.

5. Example: Wintering Locations of Canada Geese
The tests proposed in the above sections, i.e., Test3G, which
generalizes Test3 of the unisite case, and the test of mix-
tures which we have dubbed TestM, allow assessment of the
fit of the JMV model. Combined with an LRT of model AS
versus JMV, they should also allow assessment of the fit of
the AS model. As with the unisite models, some strategy of
pooling is likely necessary because small expected values will
frequently appear in some of the many cells. (For Test3G,
Fisher’s exact test or a Monte Carlo method are alternative
solutions.) In this section, we do not intend to provide a com-
plete discussion of the question of pooling (which deserves to
be treated on its own), but nonetheless attempt to identify
some guidelines for future studies through a new treatment
of a pioneering example from the literature: the interannual
movements among geographical locations of wintering snow
geese (Branta canadensis). This is typical of the biological sit-
uation for which the multisite models—often used today to
study transitions among states—were originally developed.
This data set has been analyzed at least twice: first only
partially by Hestbeck, Nichols, and Malecki (1991), then by
Brownie et al. (1993). The main result of those previous anal-
yses is that the geese tend to come back to a site previously
visited in another, but not necessarily the most recent, year.
This violation of the assumptions of the AS model led the
authors to introduce the so-called memory models. Here we
investigate whether our tests are able to detect this particular
kind of departure from the assumptions of the AS model.

We use the full data set, i.e., all observations throughout
three wintering regions over six years of observations. With

this number of sites and time intervals, there are 12 tests
3(i, l) and 3 tests Mi. Despite the relatively large number
of animals in the data set, some expected cell values in the
tables making up Test3G remained low. We decided to pool
until all expected cell values were greater than 2. For exam-
ple, the pattern of low expected values for component (2, 1)
(Table 3) led us to first pool together the columns and the
rows corresponding to sites 2 and 3. To complete the pool-
ing, a second step consisted in grouping occasions 5 and 6
within sites. The results of pooling for all the components of
Test3G are given in Figure 5. Each time the major pooling
step consisted of grouping the sites other than those where
the animals had been observed, a “here” versus “elsewhere”
alternative. To implement TestM, we used a procedure origi-
nally developed to analyze psychological data. This procedure
consists of two steps: first the cell probabilities of the bases
and the mixture coefficients are estimated by maximum likeli-
hood; then the likelihood-ratio statistic G2 is computed from
the observed and expected frequencies (Yantis, Meyer, and
Smith, 1991). The results for TestM are given in Figure 6. As
for the difference in deviance between the AS and JMV mod-
els, it was obtained by fitting the two models with SURVIV
(White, 1983). In conclusion, the JMV model is clearly re-
jected (χ2(150) = 854.2385, P < 0.0001) (see Table 4). As for
the AS model, when accounting for the variability detected at
the level of the JMV model, it is accepted by an analysis of
deviance (Wedderburn, 1974) (F (24, 150) = 0.74, P = 0.81).

An expected advantage of contingency tables is readabil-
ity, so that an alternative can be identified when the data
fail to meet the requirements of the focus model. How-
ever, the present tables are relatively complex and a further,
directional summarization may be helpful. To specifically ad-
dress the memory phenomenon, we constructed new contin-
gency tables, one per batch, with only those animals seen be-
fore and seen after the current occasion. Within a table, the
animals are arranged according to where they were last seen
(the rows) and to where they will next be seen (the columns).
The associated tests “where before”–“where after” (WBWA)
can easily be included as a step in a partitioning of Test3G.
Table 5 presents the results of this partial test, as well as
a summary of the signed contributions of each cell. Clearly,
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Figure 5. Components of Test3G after pooling for the Canada geese data. Within each table, the individuals are arranged
by location of previous capture in rows, and next capture in columns; in both cases, row or column, a “-” sign means no
capture. For example, among the individuals released at occasion 3 and site 3 (Test3(3,3)), 154 individuals had not been seen
before time 3 (the row heading is a “-”) and were next seen at occasions 4, 5, or 6 at site 3.

whatever the present location of an animal, there is a strong
positive relationship between where it has last been seen and
where it will next be seen again. Thus, TestWBWA strongly
supports the hypothesis of memory in the choice of a wintering
region. Using TestWBWA to estimate the residual deviance
in an analysis of deviance, the difference in deviance between
AS and JMV is not significant (F (24, 26) = 0.22, P = 1).
This confirms that JMV does not represent an improvement
over AS in this particular case.

6. Discussion
If, from a biological point of view, the AS model appears as
the natural generalization to several sites of the CJS model,
then—as already noted by Brownie et al. (1993)—from a
methodological point of view the JMV model is a better
candidate for the title. Brownie et al. (1993) have pointed
out the similarity of the moment estimators of CJS and JMV
models. We add that characterization 1 convincingly relates
JMV, rather than AS, to CJS. However, there are also limits
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Figure 6. Components of TestM for the Canada geese data.
In each table, the three upper rows are mixtures, the three
lower rows are bases (see Figure 3 for details). For instance,
given that TestM3 relates to occasion 3, “196” in the middle of
its second row means that 196 individuals had been released
earlier at site 2 (row (u < 3, 2)), were not captured at occasion
3 (their location then is unknown), and were next recaptured
at site 2 and occasion 5 (v = 2, j = 5). The animals captured
at occasion 3 appear in the bottom rows (the bases).

to the correspondence between the unisite and multisite sit-
uations. If the number of occasions k is greater than three,
the moment-type estimators of the JMV model analogous to
those of the CJS model (see Appendix in Brownie et al., 1993)
are not maximum likelihood estimators. This is most proba-
bly linked to the fact that, apart from the binomial case,
the minimal sufficient statistics for mixtures of multinomials
is of greater dimensionality than the set of parameters—as
can be easily verified using proportional likelihood equiva-
lence classes (see Cox and Hinkley, 1974, p. 24). Then the
marginal totals cease to be sufficient.

The main result of this article is that the combined use of
Test3G and TestM makes possible an assessment of the fit of
the JMV model. However, this model is not as interesting to
biologists as it may be to methodologists. It would thus be
very useful to translate the constraint on the β’s that differ-
entiates AS from JMV in terms of properties of the mlm

ij ’s or
of some other statistics. So far, our attempts have been un-
successful. Pending progress, the ability to fit the JMV model
is thus critical, and development of current software in this
respect is highly desirable. If the JMV model could be fitted
routinely, the goodness-of-fit test to the JMV model, com-
bined with the comparison of models JMV and AS, would be

Table 4
Results of the goodness-of-fit test to the AS model for the

Canada geese data

Summary of Test3G results

Component Chi-square df P-level

Test3(2,1) 39.5658 12 <0.0001
Test3(2,2) 38.5977 8 <0.0001
Test3(2,3) 18.3610 4 0.0010
Test3(3,1) 118.4752 12 <0.0001
Test3(3,2) 59.7354 12 <0.0001
Test3(3,3) 49.6930 4 <0.0001
Test3(4,1) 90.1297 8 <0.0001
Test3(4,2) 64.9801 12 <0.0001
Test3(4,3) 76.6404 8 <0.0001
Test3(5,1) 62.3343 6 <0.0001
Test3(5,2) 53.7470 6 <0.0001
Test3(5,3) 88.1583 4 <0.0001
Test3G 760.4179 96 <0.0001

Summary of TestM results

Component Chi-square df P-level

TestM2 34.6852 27 0.1470
TestM3 36.0371 18 0.0070
TestM4 23.0983 9 0.0060
TestM 93.8206 54 0.0006

Likelihood ratio test between
the JMV and the AS models

Chi-square df P-level

101.282 24 <0.0001

a way to validate the analyses of the many ongoing multistate
studies.

As proposed, the tests 3G and M are somewhat raw and
could probably be made more specific by partitioning and
pooling to improve both their ease of interpretation and their
efficiency. In this article, we have attempted to render Test3G
more informative for the Canada goose example. A subtest of
Test3G, which we named TestWBWA, apparently captured
most of the lack of fit in our example, i.e., probably most of
the variability due to “memory.” As we believe that the mem-
ory model is often a biologically more plausible alternative
to the AS model than is JMV, we believe that the strategy
for partitioning should yield tests sensitive to the memory
model alternative. Partitioning should reflect a biologically
important alternative even when dealing with states instead
of sites. Beyond that, a general remark is that the meaning
of the states depends on the particular study and that, con-
trary to occasions, they have no a priori compelling ordering.
Hence, it may be necessary to develop different strategies of
partitioning and pooling, corresponding to broad classes of
data.

The methods described in this article are implemented in
the software program u-care version 2.0 available at the web
address ftp://ftp.cefe.cnrs-mop.fr/biom/Soft-CR, direc-
tory u-careV2.0.
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Table 5
Contingency tables making up test “where before” vs. “where after” for the Canada geese data. Each component WBWA(i,l )

contains the animals seen at occasion i and site l (the current location) that had been seen at least once previously and were seen
at least once later. They are arranged according to their most recent capture location (the rows) and to their next capture

location (the columns). For example, 19 in WBWA(5,2) means that among the animals captured at occasion 5 and site 2, 19
had been previously captured at site 3 (third row) and were next recaptured at site 2 (second column). The associated p-value of
Fisher’s exact test for homogeneity is given below each table. A symbol (+) (resp. (−)) following an observed number means that

the corresponding cell has a relative positive (resp. negative) contribution to the chi-square test for homogeneity greater than
2 per cent

i = 2 3 4 5

102 (+) 9 (−) 0 228 (+) 26 (−) 1 278 (+) 57 (−) 0 (−) 176 (+) 31 (−) 0
l = 1 24 (−) 14 (+) 0 45 (−) 49 (+) 2 39 (−) 29 (+) 2 31 (−) 35 (+) 0

10 (−) 5 (+) 0 2 (−) 4 (+) 2 (+) 1 (−) 2 (+) 0 2 2 2 (+)

P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001

13 (+) 8 (−) 0 21 (+) 39 (−) 1 44 (+) 75 (−) 1 38 (+) 55 (−) 1
l = 2 31 (−) 253 3 32 (−) 433 9 (−) 52 (−) 491 13 39 (−) 346 (+) 5

1 10 2 (+) 4 43 12 (+) 0 (−) 26 13 (+) 4 19 5 (+)

P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001

0 0 0 0 0 0 3 (+) 1 1 (−) 2 (+) 5 (+) 1 (−1)
l = 3 1 (+) 2 (+) 0 (−) 0 (−) 3 (+) 6 (−) 1 7 (+) 7 (−) 1 9 (+) 5 (−)

1 (−) 10 27 2 16 (−) 83 4 (−) 9 (−) 97 1 (−) 20 (−) 90 (+)

P = 0.0160 P = 0.3204 P < 0.0001 P < 0.0001
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Résumé

L’identification d’un modèle qui ajuste les données est une
étape critique d’une analyse de capture-recapture. Pour les
modèles multisites (aussi dits multi-états) un tel test n’était
pas disponible. Nous en proposons un sous la forme de ta-
bles de contingence à tester pour homogénéité ou mélange
pour le modèle JMV qui est une généralisation du modèle de
référence d’Arnason-Schwarz (AS). Pour ce dernier modèle
nous suggérons de compléter le test précédent par le test du
rapport de vraisemblance entre les deux modèles. L’examen
d’un exemple nous conduit de plus à proposer un parti-
tionnement qui met en avant le rôle du modèle à mémoire
(Brownie et al., 1993) comme alternative biologiquement plus
plausible au modèle AS.
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Appendix

The Mixture Property of the Arnason-Schwarz Model

In this appendix, we establish the mixture property, stated as
the consequence of biological property 3 in the main text, for
batch (i, l) (the mixture), and batches (i + 1, 1) to (i + 1,
s) (the bases). Let αlm

i denote the product φlm
i pmi+1, β

lm
i the

product φlm
i (1 − pmi+1), and πlm

ij = E(mlm
ij |Rlm

i )/Rlm
i the cell

probability. Then:

Theorem A1: The Arnason-Schwarz model im-
plies that πlm

ij , cell probability, is of the form
δ′l

∏j−2
u=i BuAj−1δm, j > i with δl = (0, . . . , 1, 0, . . .)′ (1 at

position l ) and Ai = (αlm
i )1<l,m<s, i = 1, . . . ,k − 1; Bi

= (βlm
i )1<l,m<s, i = 1, . . . ,k − 2.

In particular, we have

Proposition A1:

πlm
i,i+1 = αlm

i

and given that

Lemma: AB =
∑s

v=1 Aδvδ
′
vB = A

∑s
v=1 δvδ

′
vB, where

s is the common number of columns of A and rows of B,
we also have:

Proposition A2:

πlm
ij =

s∑
v=1

βlv
i π

vm
i+1,j ∀j > i+ 1

Proof.

πlm
ij = δ′l

j−2∏
u=i

BuAj−1δm

= δ′lBi

j−2∏
u=i+1

BuAj−1δm

=

s∑
v=1

δ′lBiδvδ
′
v

j−2∏
u=i+1

BuAj−1δm

=

s∑
v=1

βlv
i π

vm
i+1,j . �

We now consider the probability λl
i that an animal belong-

ing to batch (i, l) is ever reobserved: λl
i =

∑k

j=i+1

∑s

m=1 π
lm
ij .

A generalization of the recurrence relationship for the lamb-
das as given in (Burnham 1991, p. 27) is

Theorem A2:

λl
i =

s∑
m=1

αlm
i +

s∑
m=1

βlm
i λm

i+1

Proof.

λl
i =

k∑
j=i+1

s∑
m=1

πlm
ij

=

s∑
m=1

πlm
i,i+1 +

k∑
j=i+2

s∑
m=1

πlm
ij

=

s∑
m=1

αlm
i +

k∑
j=i+2

s∑
m=1

s∑
v=1

βlv
i π

vm
i+1,j

=

s∑
m=1

αlm
i +

s∑
v=1

βlv
i

k∑
j=i+2

s∑
m=1

πvm
i+1,j

=

s∑
m=1

αlm
i +

s∑
v=1

βlv
i λ

v
i+1. �

It is now possible to demonstrate that
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Theorem A3: The survivors from batch (i, l )—i.e.,
those released at site l and time i, that are captured at
the different sites from time i + 2 to time k (ml,v

i,j , j =
i + 2, . . . ,k, v = 1, . . . , s)—are distributed according to
a multinomial, which is a mixture of the s multinomi-
als arising from the recaptures at the same times and at
the same sites as those of the survivors of the s batches
released at time i + 1 at the different sites.

Proof. The cell probabilities of the multinomial distribu-
tions for batch (i, l) and for the batches i + 1 are respectively:

batch(i, l) πl,1
i,i+1 . . . πl,1

i,i+2 . . . . . . πls
ik 1 − λl

i

π1,1
i+1,i+2 . . . . . . π1,k

i+1,s 1 − λ1
i+1

batches i+1
...

...
...

πs,1
i+1,i+2 . . .

The corresponding conditional distributions after restriction
to the observations made from i + 2 to k are:

batch(i, l) πl,1
i,i+2 . . . πls

ik × 1

λl
i
−

s∑
m=1

αlm
i

π1,1
i+1,i+2 . . . π1,k

i+1,s × 1
λ1
i+1

batches i+1
...

...
...

πs,1
i+1,i+2 . . .

From πlm
ij =

∑s

n=1 β
ln
i π

nm
i+1,j (see above), it follows that:

πlm
ij

λl
i −

s∑
m=1

αlm
i

=

s∑
n=1




βln
i λ

n
i+1

λl
i −

s∑
m=1

αlm
i



πnm
i+1,j

λn
i+1

,

∀m ∈ [1, s], j ∈ [i+ 2, k]

where, according to Theorem A2,
∑s

n=1 (
βln
i

λn
i+1

λl
i
−
∑s

m=1
αlm
i

) = 1.

�


