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Abstract. Both evolutionary ecologists and wildlife managers make inference based on
how fitness and demography vary in space. Spatial variation in survival can be difficult to
assess in the wild because (1) multisite study designs are not well suited to populations that are
continuously distributed across a large area and (2) available statistical models accounting for
detectability less than 1.0 do not easily cope with geographical coordinates. Here we use
penalized splines within a Bayesian state-space modeling framework to estimate and visualize
survival probability in two dimensions. The approach is flexible in that no parametric form for
the relationship between survival and coordinates need be specified a priori. To illustrate our
method, we study a game species, the Eurasian Woodcock Scolopax rusticola, based on band
recovery data (5000 individuals) collected over a .50 000-km2 area in west-central France
with contrasted habitats and hunting pressures. We find that spatial variation in survival
probability matches an index of hunting pressure and creates a mosaic of population sources
and sinks. Such analyses could provide guidance concerning the spatial management of
hunting intensity or could be used to identify pathways of spatial variation in fitness, for
example, to study adaptation to changing landscape and climate.

Key words: Bayesian state-space modeling; bivariate radial spline; capture–mark–recapture; capture–
recovery; Eurasian Woodcock; generalized additive models (GAM); hunting management; Leslie matrix;
population growth rate; Scolopax rusticola; smooth function; sustainability of wildlife exploitation.

INTRODUCTION

Population biologists are often interested in how the

demography of their study species varies across space

(e.g., Post 2005, Quintana-Ascencio et al. 2009, Saracco

et al. 2010). Indeed, demography and fitness measures

are closely linked, making spatial variation in demo-

graphic parameters of crucial importance to answer

questions related to local adaptation, range limits,

habitat choice, and dispersal, particularly in a context

of ever more rapidly changing climate and human land

use (Hirzel and Le Lay 2008). In addition, wildlife

managers generally want to assess the effect of, or

identify the need for, management actions (Schwartz et

al. 2010). The spatial location of hunting-free reserves,

for example, is subject to a number of socioeconomic

pressures, and a sounder scientific basis might facilitate

more directed decisions. Survival probability is the key

demographic parameter here, because it is both driving a

substantial part of the variation in population growth

rate, and is impacted on by exploitation. Yet character-

izing its variation over space often remains a method-

ological challenge.

An often used method to assess spatial variation in

survival probability is multisite capture–recapture

schemes, in which individuals are marked across a

selection of isolated ‘‘sites’’ and are subsequently

reencountered in these or more sites. Multistate cap-

ture–recapture models (Hestbeck et al. 1991) are then

used to infer how the survival probability varies between

sites. This study design, however, is relevant only in a

limited number of situations, because sites have to be

clearly separated, e.g., habitat fragments (Githiru and

Lens 2006) or breeding colonies (Péron et al. 2010). In

most cases, however, the population will be continuous-

ly, and sometimes sparsely, distributed across the

landscape. Therefore, a sound method to assess contin-

uous (as opposed to site-specific) spatial variation in

capture–recapture model parameters seems required

(Saracco et al. 2010). Here we introduce a method for

attaining spatially explicit estimates of survival proba-

bility based on splines, i.e., the fitting of piecewise

regressions (Ruppert et al. 2003). The approach is based

on state-space modeling of band recovery and mark–

recapture data, and is implemented in a Bayesian
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framework using Markov chain Monte Carlo (MCMC)

algorithms with WinBUGS (Spiegelhalter et al. 2003).

To illustrate our approach, we analyze data from the

Eurasian Woodcock Scolopax rusticola, a forest-dwell-

ing game bird, for which large sample sizes of banding

and recovery records are available (Ferrand et al. 2008).

How survival varies in space in this population can

constitute evidence for the additive nature of hunting

mortality. The ‘‘additive hypothesis’’ implies that the

hunting-related mortality adds to other, natural sources

of mortality (Burnham and Anderson 1984). Therefore,

areas of high and low hunting intensity should exhibit

low and high survival probability, respectively. The

‘‘compensatory hypothesis,’’ on the other hand, states

that an increase in one source of mortality is compen-

sated via a decrease in other sources (Burnham and

Anderson 1984). These two situations obviously corre-

spond to two theoretical points on a gradient of possible

responses to exploitation: it is likely that both additive

and compensatory mortality co-occur, at least up to a

threshold of hunting pressure after which compensation

mechanisms become insufficient (Williams et al. 2002).

We will also show that spatial variation in survival

probability can produce a mosaic of population sources

and sinks across the landscape (Pulliam 1988, Novaro et

al. 2000, Schwartz et al. 2010).

STATE-SPACE JOINT MODELING OF BAND RECOVERY AND

CAPTURE–RECAPTURE DATA

Survival probability /i,t of individual i between year t

and tþ 1 was not directly measured in the field, but was

assessed through the observations of this individual, live

or dead. The observations were obviously incomplete, in

that not all live individuals were recaptured and not all

dead individuals were reported as such. To analyze these

data, we made explicit the distinction between the

observation (detected or not) and the state of individuals

(alive or dead) by developing a state-space model

(Gimenez et al. 2007, Royle 2008, Schofield and Barker

2008). The incorporation of a spatial structure in

survival is made much more convenient when survival

is separated from nuisance parameters.

We considered three states: ‘‘alive and available to

capture,’’ ‘‘newly dead and available to recovery,’’ and

‘‘long dead and not available,’’ and denoted by Si,t the

random state vector taking values (1,0,0), (0,1,0), (0,0,1),

if, at time t, individual i was in state alive, newly dead, or

long dead, respectively. The observations ‘‘not seen,’’

‘‘recaptured alive,’’ and ‘‘recovered dead’’ were then

generated from these underlying states. We denoted by

Oi,t the random observation vector taking values (1,0,0),

(0,1,0), (0,0,1) if, at time t, individual i was not seen,

recaptured alive or recovered dead. We also introduced

model parameters as follows: given that individual i was

alive a time t, it may survive to time tþ 1 with survival

probability /i,t and be recaptured with recapture

probability pi,t. Given that individual i is dead at time

t, it may have died from hunting and be reported as such

with recovery probability ri,t. The state-space model is

then described by the state equations that specified the

state of the individuals at time tþ 1, given their state at

time t:

Si;tþ1 jSi;t ; multinomial 1; Si;t
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NONPARAMETRIC AND SEMIPARAMETRIC SPATIAL

REGRESSION OF SURVIVAL PROBABILITY

The survival probability /i,t of individual i banded in

location xi¼ (xi, yi ) from time t to tþ 1 was modeled as

follows:

logitð/i;tÞ ¼ log
/i;t

1� /i;t

 !
¼ f ðxiÞ þ ei ð3Þ

where f is a nonparametric regression function, xi is the

dimension-two vector containing coordinates, and ei are
individual random effects independently and identically

distributed as N(0, re). Time dependence and age

dependence in /i,t are omitted for clarity, but were

eventually included in the model using fixed effects. The

interest of the method is to use a function f allowing a

description of the data that is sufficiently unconstrained

to capture spatial variation of unknown shape (i.e., no

predetermined form as in parametric regression), but

also allowing a sufficiently autocorrelated fit so that

irregularities in the data are smoothed. We obtained

these properties by using a bivariate spline function and

by penalizing rough fits (Ruppert et al. 2003, Gimenez et

al. 2006, Gimenez and Barbraud 2009).

Spline functions are the sum of K piecewise regres-

sions, connected at breakpoints or knots (jk)k¼1,...,K,

where jk is a dimension-two vector containing coordi-

nates. Because we dealt with geographical coordinates

(the individual banding location xi ), we needed the fit to

be insensitive to a change in orientation of the axes

(rotational invariance), which we obtained by using the

distance function C, defined as C(u, v)¼ ||v� u||2 log||v�
u||, where ||r|| ¼

ffiffiffiffiffiffiffiffi
r>r
p

is the norm of vector r (more

detail in Appendix A). The bivariate radial spline

function is then written as follows:

f ðxiÞ ¼ b0 þ b1 � xi þ b2 � yi þ
XK

k¼1

bk � Cðjk; xiÞ ð4Þ

August 2011 1673SPATIALLY EXPLICIT SURVIVAL AND SINKS



where b0, b1, b2, and (bk)k ¼ 1,...,K are parameters to be

estimated. Random data irregularities generally make

the use of Eq. 4 of little interest if some amount of

smoothing is not applied. Smoothing is equivalent to

offsetting the jumps in the first-order derivative of f,

which in turn, is equivalent to penalizing the knots

contributing to these jumps; thus the term penalized

splines or P-splines. Such penalization is performed by

putting a constraint on the norm of vector (b1, � � �, bK),
which renders the criterion to be minimized exactly

similar to the fitting criterion of a linear mixed model

(Appendix A), with b-elements as fixed effects, and b-

elements as random effects distributed as N(0, rb). This

penalization has two advantages: (1) it makes the

implementation of P-splines straightforward in standard

computer packages as long as random effects can be

handled, and (2) a data-driven optimal estimate of the

amount of smoothing is obtained as a by-product as k¼
re/rb (Appendix A). The final step in building P-splines

was to choose the number and position of knots jk

(detail in Appendix A).

The same semiparametric spatial regression model

structure was applied to recovery probability ri,t:

logitðri;tÞ ¼ f 0ðxiÞ þ e 0i : ð5Þ

Hereafter, parameters with a prime refer to the model

for the recovery probabilities.

Due to the life history of Eurasian Woodcocks, our

model was also slightly more complex than what was

just presented, in that the spatial regression was applied

to the winter period only: /i,t and ri,t corresponded to

winter (October–February) survival and recovery prob-

abilities. Overall survival probability was the product of

/i,t and of ni,t, the summer survival (Appendix B; see

Gauthier and Lebreton 2008). We did not use recoveries

occurring on the breeding grounds; recovery probability

ri,t applied only to the winter period (Appendix B).

MODEL SELECTION AND INFERENCE

Bayesian inference

We used the MCMC algorithm as implemented in

WinBUGS 1.4 (Spiegelhalter et al. 2003) to integrate the

resulting multidimensional likelihood function. We

generated two chains of length 20 000, discarding the

first 5000 as a burn-in, and assessed the convergence of

the chains using the Gelman-Rubin criterion (Brooks

and Gelman 1998). The R package R2WINBUGS

(Sturtz et al. 2005) was used to call WinBUGS and

export results into the R environment (R Development

Core Team 2010).

The priors for the hyperparameters r2
b and r2

e , as well

as r 02
b and r 02

e , were uniform on [0, 8]. The b- and b0-

elements were assigned normal priors with mean 0 and

variance 100. The use of larger prior variances would

occasionally induce numerical instabilities (supposedly

linked to survival probability reaching its upper or lower

boundary). Parameters used to describe the fixed effects

(on the logit scale) of age, sex, and year were given

normal priors with mean 0 and variance 10 000. We also

incorporated the fixed effect of direct (same year as

banding) and indirect (subsequent years) recovery on

recovery probability (Appendix B), to which we gave a

normal prior with mean 0 and variance 10 000.

Indicator variables for the selection of effects

Was this spatial structure justified by the data

compared to the null model in which parameters were

spatially invariant? We used a model selection approach

to address this question in the Bayesian framework

(Kuo and Mallick 1998). A two-mode variable that we

term ‘‘indicator’’ (0/1) described the presence/absence of

a given effect in each simulation of the MCMC chains

(Royle and Dorazio 2008:70 ff.). We included indicator

variables for all parameters occurring in the spline part

of function f, and considered that if at least one of the

indicators was equal to one in more than 95% of the

posterior sampled values (i.e., the corresponding pa-

rameter had to be included in the model), the spatial

model was selected over the null model (model with no

spatial variation). The performance of this approach

remaining to be evaluated, we also relied on the

Deviance Information Criterion, DIC (Spiegelhalter et

al. 2003).

APPLICATIONS

To illustrate the use of nonparametric and semi-

parametric spatial regression of survival in a manage-

ment context, we analyzed capture–recapture–recovery

data from the Eurasian Woodcock (Scolopax rusticola)

population wintering in France. Briefly, on the wintering

grounds most woodcocks commute daily between

nighttime feeding grounds (mainly meadows) where

banding occurs using pole-hanged nets and flashlights,

and daytime roost sites in forests, where hunting occurs

(Duriez et al. 2005). Woodcocks are marked with metal

bands. Recovered bands are reported to the woodcock

network group at the Office National de la Chasse et de

la Faune Sauvage (French Hunting and Wildlife

Service). More detail on field methods can be found in

Gossmann et al. (1994) and Ferrand et al. (2008). Here

we used data collected between October 1989 and

February 2009 (20 years, which is almost the maximum

recorded longevity of that species, and more than 10

times the average life span in the population). The study

area was restricted to the subset between 08 and 28 E and

46.58 and 49.58 N, France, from which we randomly

selected 5000 individuals out of 6693 to reduce the

computational burden.

This area encompassed four qualitatively contrasted

units. (1) The Northeast corresponds to the intensively

cultivated Beauce, and is also partly urbanized. Wood-

cock habitat is only relictual in this area; accordingly,

banding and recovery records were sparse there. (2) The

Southeast corresponds to the forested Sologne. The area

holds favorable woodcock habitat but is also renowned
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for its hunting estates. Dense records of banding and

recovery occurred there. (3) The Southwest encompasses

the Regional Park of Loire Anjou Touraine, which

holds a mosaic of moist forests and grazing and hay

meadows, constituting probably the best woodcock

habitat in the study area. (4) The Northwest includes

agricultural land of less intensive nature (hedged
farmland), where banding and recovery records were

also densely distributed.

The sampling design specific to the woodcock data
made it compulsory to refine capture–recapture–recov-

ery multistate models. We present these developments in

Appendix B. Most importantly, survival had to be

modeled on a monthly basis: monthly winter survival is

the fifth root of overall winter survival.

Hunting pressure and additive mortality

If hunting mortality is at least partially additive to

other sources of mortality, spatial variation in hunting

pressure should be proportional to spatial variation in
winter survival probability.

The local hunting pressure on woodcocks was

measured through a proxy that we term the local
hunting pressure index (HPI). The computation of that

index was based on the fact that, although woodcocks

are generally site faithful, they may disperse long

distances during severe winters (Gossmann et al.

1994). Thus, during average weather, woodcocks are

subjected to the local hunting pressure, but after cold

spells, many woodcock are out of their usual location

and are subjected to a different hunting pressure. HPI

for a given location was then the proportion of birds

banded in that location that were recovered dead within
a 10 km radius. HPI is a reliable proxy for local hunting

pressure only if band reporting rate (the rate at which

hunted individuals are reported as such) is roughly

invariant across banding locations (discussed in Discus-

sion: General applicability and interest of the method ).

We computed HPI over the 20 years of data available,

using only locations where at least 20 woodcocks had

been banded over that period. We focused thereby on

the temporal average of local hunting pressure. Then we

visually compared the spatial variation in survival and in
HPI. If the maps indicated a cross-correlation between

survival and HPI, we tried the following semiparametric

model, in which hunting pressure effect was directly

incorporated as

logitð/i;tÞ ¼ a � Hi þ f ðxiÞ þ ei ð6Þ

where Hi corresponded to the HPI at the banding

location of individual i. The slope of the regression a
was a new parameter to be estimated. Other notations

are as in Eq. 3. We then used the model selection method

described in the previous section to determine whether

any spatial variation in survival remained to be observed

after having accounted for the effect of HPI. If spatial

variation was selected, this meant that HPI was not the

sole driver of spatial variation and that some other

variables (e.g., habitat) played a role. Parameter a was

given a uniform prior distribution on [�2, 0]. In the

following, we call model 1 the model without the effect

of HPI (a¼ 0, as in Eq. 3) and model 2 the model with

HPI effect (with parameter a to be estimated, as in Eq.

6).

In addition, we also examined the posterior mean of

q, the average over individuals of qi¼ f 0(xi )/f(xi ), where

f 0 and f represent, respectively, the location-specific

component of recovery and survival probabilities.

Although known to be plagued by sampling and process

biases (Burnham and Anderson 1984, Servanty et al.

2010), this measure of the spatial cross correlation

between survival probability and the probability of

dying from hunting may bring supporting information

on the level of additivity.

Sources and sinks within a population

We expected that survival should vary in space, partly

due to hunting pressure. Then the question arose

whether low-survival areas were indeed sustainable,

i.e., whether enough individuals survived for the local

stock to keep its current level. Values were generated

from the posterior distribution of survival, averaged

over years, and plugged into a two-age-class matrix

population model (post-breeding pulse formulation).

We assumed that all females had the same fecundity

irrespective of their wintering location, partly because

we lacked precise data on breeding success and partly

because some level of mixture is supposed to occur on

the breeding grounds between birds wintering in

different locations. We used 1.8 offspring per female as

value for fecundity (Hoodless and Coulson 1998,

Ferrand et al. 2008). We computed the location-specific

population growth rate as the largest eigenvalue ki of the
population matrix in location xi. We thereby obtained a

sample of values from the posterior distribution of ki.
We then draw a map of spatial variation in population

growth rate, illustrating how local drops in survival

probability created population sinks.

RESULTS

Spatial variation selected against the null model

In the model without HPI effect (model 1), all

indicator variables had a mean . 0.25 across simulation

outcomes, and several had a mean . 0.95. The DIC of

the model with spatial component was 4822.8, compared

to 11 603.6 if the spatial component was removed. Thus,

the use of the spline functions in both survival and

recovery probabilities was very likely to improve model

fit: survival and recovery probabilities varied in space. In

the model with HPI effect (model 2), all indicator

variables still had a mean . 0.25 across simulation

outcomes, but overall the means were lower, indicating a

probably smaller, but still important, spatial variation:

some yet unidentified variables drove variation that

added to the one caused by HPI.
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Spatial variation in winter survival and recovery

probabilities

In the model without HPI effect (model 1), the

comparison of the survival map and the HPI map

indicated a match between the spatial variations in these

two variables (Fig. 1). This suggested that local hunting

pressure cross-correlated with survival probability,

which we tested formally using model 2. On the

opposite, the spatial cross-correlation parameter q was

not different from 0 (95% credible interval:�1.81, 2.02).
A value of q significantly different from zero was

expected if survival and recovery probabilities were

consistently cross-correlated across the range. Accord-

ingly, the match of the survival map with the map for

recovery probabilities was poor (Fig. 2 vs. Fig. 1a). In

the model with HPI effect (model 2), the estimate of a
was �0.53 (95% credible interval: �1.34, �0.04). Some

spatial variation in winter survival probability remained

after correcting for HPI; it is mapped in Appendix D:

Fig. D1.

Population growth rate

Parameter values used in this section are from model

1. The mean of yearly survival probability of adult

woodcocks varied spatially between 0.47 and 0.67

(computed as the fifth power of the values presented in

Fig. 1, multiplied by the estimate for summer survival

probability). The mean of yearly juvenile survival varied

spatially between 0.35 and 0.65. Low-survival parts of

the woodcock range were not sustainable without

immigration from areas with low hunting (Fig. 3).

DISCUSSION

The match between survival and HPI: potential

implications for hunting management

Survival and HPI variations were observed to match

in space, and accordingly we detected a spatial (as

opposed to temporal) cross-correlation between these

variables. In other words, the higher the HPI, the lower

the survival. This suggests the additivity of hunting

mortality over other sources of mortality. However, a

sampling covariance of unknown magnitude exists

between HPI and survival (Burnham and Anderson

1984). This sampling bias on the estimate of the

correlation coefficient between survival and recovery

probability originates from the fact that individuals have

to be dead in order to be recovered. The lack of strong

spatial cross-correlation between survival and overall (as

opposed to local; see next section) recovery probabilities

may nevertheless suggest that the sampling covariance is

small in our case.

The survival surface (Fig. 1a) clearly indicated that

the zone between ;1.58 and 28 E and 478 and 488 N was

a low-survival area, in which monthly survival proba-

bility dropped to an unsustainable 0.92–0.94. This zone

corresponded to a peak in the HPI (Fig. 1b). Moreover,

FIG. 1. (a) Spatial variation in mean monthly winter survival probability (averaged over years) of Eurasian Woodcock
Scolopax rusticola, based on band recovery data (5000 individuals) from a .50 000-km2 area in west-central France. (b) Spatial
variation in hunting pressure index HPI, the proportion of birds banded in a location that were recovered dead within a 10-km
radius (see Applications: Hunting pressure and additive mortality for computation of this index). Dots indicate banding locations
with respect to latitude and longitude. Isolines correspond to the grayscale tick marks in the keys. Corresponding maps of standard
deviation are provided in Appendix C: Fig. C1.
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it can be roughly matched to the location of the Sologne,

a region renowned for its hunting estates. The zone that

borders our study area on the west was also character-

ized by a match between high HPI and low survival. In

contrast, the area between ;0.258 and 0.68 E and 46.58

and 478 N exhibited high survival and relatively low

HPI. This zone roughly corresponds to the Regional

Park of Loire Anjou Touraine, where a mixed landscape

of forests and wet grazing and hay meadows likely holds

prime woodcock habitat.

The French-wintering woodcock population has been

stable or slightly increasing over the study period

(Ferrand et al. 2008). Local extinctions, to our

knowledge, are never reported. Overall, our results are

thus congruent with the hypothesis that highly hunted

estates are sinks (Fig. 3), but that these subpopulations

remain stable because juvenile birds produced in eastern

and northern Europe distribute themselves across both

high- and low-survival wintering areas. Moreover,

individuals do not seem to modify their wintering

locations based on the hunting pressure encountered

during their first winter, although the latter assertion

remains to be tested in more detail (but see Gossmann et

al. 1994).

The mismatch between survival and recovery probabilities

HPI (Fig. 1b) corresponded to local recoveries (within

10 km of the banding location), whereas (overall)

recovery probability (Fig. 2) corresponded to both local

and nonlocal recoveries. The lack of a strong spatial

cross-correlation between overall recovery and survival,

although HPI did affect survival, suggests that the two

types of recoveries correspond to different processes.

Indeed, nonlocal recoveries mostly occur in a different,

southern area, where woodcocks migrate to when the

weather is harsh (G. Péron, Y. Ferrand, F. Gossmann,

C. Bastat, M. Guenezan, and O. Gimenez, unpublished

data). Fig. 2 might thereby indicate a spatial pattern in

the propensity to migrate during severe winters.

However, caution is needed with this interpretation,

given the large standard deviation of the posterior

distribution of recovery probability (Appendix C: Fig.

C2).

General applicability and interest of the method

The method is based on the assumption that the

location at banding is a relevant explanatory variable

(Royle and Dubovsky 2001, Doherty et al. 2002). In

woodcocks, we can safely assume that the banding

location lies in the area where an individual will spend

most of its winters (Gossmann et al. 1994).

The main advantage of the method is that there are no

a priori hypotheses, either on the factors at stake in the

variation in survival, or on the way survival should vary

in space. Indeed, many exploited species, from seafood

(Leaf et al. 2007) to bushmeat (Mockrin 2010), are

FIG. 2. Spatial variation in mean band recovery probability
(averaged over years; all birds in the study were banded). Dots
indicate banding locations with respect to latitude and
longitude. Isolines correspond to the grayscale tick marks in
the key. The corresponding map of standard deviation is
provided in Appendix C: Fig. C2.

FIG. 3. Spatial variation in mean population growth rate, k
(averaged over years). Dots indicate banding locations with
respect to latitude and longitude. The bold line represents the
limit between sinks and sources (k¼ 1). Isolines correspond to
the grayscale tick marks in the key. A corresponding map of
standard deviation is provided in Appendix C: Fig. C3.
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typically difficult to monitor, and sometimes little is

known about their habitat requirements and local

sustainable yield. These species nevertheless often

constitute important economic or livelihood enhance-

ment resources, and capture–recovery data can some-

times be easily obtained, taking advantage of the

exploitation. Decision-makers could then use the results

of spatial survival analyses to target management

actions: e.g., set limitations to exploitation in the parts

of the range where survival is found to be unsustainably

low, and/or use the variation in survival to refine

knowledge about habitat requirements. High-survival

areas can also act as sources that refill exploitation areas

with dispersing offspring (Pulliam 1988, Novaro et al.

2000), and thereby deserve targeted management, such

as enhancing their connectivity.

Although the objectives are similar, our spatial

regression model is technically different from the

conditional autoregressive (CAR) model of survival

probability (Royle and Dubovsky 2001, Saracco et al.

2010). Differences in methodology that may impact on

biological inference are as follows. (1) Smoothing is data

driven in P-spline models, whereas CAR models require

that the resolution of the autocorrelation is determined a

priori by fixing the cell size of the overlying grid. (2)

CAR models may be more sensitive to data scarcity

(cells with no direct neighbor). (3) In CAR models, a

single parameter (r/ in Saracco et al. 2010) measures the

magnitude of spatial variation, whereas in P-spline

models the smoothing parameter k is more difficult to

interpret. Kriging (e.g., Ruppert et al. 2003:242 ff.) is a

third methodological option for performing a bivariate

nonparametric regression.

Whatever the method used, it can often be interesting

to first account for all previously known sources of

variation in survival, and then use the nonparametric

spatial regression approach to explore the structure of

the remaining variation and search for previously

overlooked explanatory variables. This is the procedure

that we followed when fitting model 2. Results from

this model suggested that a substantial part of the

spatial variation was not explained by HPI (because the

model selection procedure for model 2 favored the

model with spatial structure in addition to the effect of

HPI). This approach, although seductive from a

biological point of view (as it can be extended to

include other covariates such as habitat features),

presented several drawbacks. First, we suspect that

because HPI was not corrected for spatial variation in

reporting rate (the probability that hunters report

bands), its variation may have been a buffered version

of the variation in actual hunting pressure. Second, as

recently highlighted by Hodges and Reich (2010), the

semiparametric formulation of model 2 renders this

model sensitive to potential colinearity between the

fixed effect of HPI and the spatial structure of the

remaining variation.
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APPENDIX A

Nonparametric and semiparametric spatial regression of survival probability index (Ecological Archives E092-141-A1).

APPENDIX B

Capture–recapture–recovery models for the French-wintering Woodcock population index (Ecological Archives E092-141-A2).

APPENDIX C

Standard deviation from the posterior distribution of the survival probability, hunting pressure index, recovery probability, and
growth rate index (Ecological Archives E092-141-A3).

APPENDIX D

Spatial variation in survival after removing the effect of hunting pressure index (Ecological Archives E092-141-A4).

August 2011 1679SPATIALLY EXPLICIT SURVIVAL AND SINKS



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU ([Based on 'AP_Press'] Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


