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Abstract The computer package WinBUGS is introduced. We first give a brief
introduction to Bayesian theory and its implementation using Markov chain Monte
Carlo (MCMC) algorithms. We then present three case studies showing how
WinBUGS can be used when classical theory is difficult to implement. The first
example uses data on white storks from Baden Württemberg, Germany, to demon-
strate the use of mark-recapture models to estimate survival, and also how to cope
with unexplained variance through random effects. Recent advances in methodology
and also the WinBUGS software allow us to introduce (i) a flexible way of incor-
porating covariates using spline smoothing and (ii) a method to deal with missing
values in covariates. The second example shows how to estimate population density
while accounting for detectability, using distance sampling methods applied to a
test dataset collected on a known population of wooden stakes. Finally, the third
case study involves the use of state-space models of wildlife population dynamics
to make inferences about density dependence in a North American duck species.
Reversible Jump MCMC is used to calculate the probability of various candidate
models. For all examples, data and WinBUGS code are provided.

Keywords Bayesian statistics · Density dependence · Distance sampling · External
covariates · Hierarchical modeling · Line transect · Mark-recapture · Random
effects · Reversible jump MCMC · Spline smoothing · State-space model · Survival
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1 Introduction

The Bayesian approach dates back to the Reverend Thomas Bayes and the
18th century. However, due to practical problems of implementing the Bayesian
approach, little advance was made for over two centuries. The development of new
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methodology coupled with recent advances in computational power and the avail-
ability of flexible and reliable software have led to a great increase in the application
of Bayesian methods within the last three decades, population ecology being no
exception (Clark 2005; Ellison 2004; McCarthy 2007). Indeed, the application of the
Bayesian theory in population ecology has been greatly facilitated by the implemen-
tation of algorithms known as Markov chain Monte Carlo (MCMC) methods (Gilks
et al. 1996 and Link et al. 2002 for an introduction for ecologists) in flexible and
reliable software. For example, MARK (White and Burnham 1999), one of the most
popular computer programs in population ecology, now includes an MCMC option
which implements a simple MCMC algorithm (White and Burnham this volume).
AD Model Builder (ADMB; Fournier 2001) is a general modeling environment
for fitting complex models to data, that has been used mainly in fisheries stock
assessment (Maunder et al. submitted), and has an MCMC option to implement
Bayesian analysis (see Maunder et al. this volume). Here we focus on the program
WinBUGS (Bayesian inference Using Gibbs Sampling; Spiegelhalter et al. 2003),
which implements up-to-date and powerful MCMC algorithms that are suited to a
wide range of target distributions for analyzing complex models.

The paper is organized as follows. We first review the Bayesian framework and
show how it can be fruitfully implemented using MCMC algorithms and program
WinBUGS. We then focus on three case studies to illustrate how WinBUGS can be
used to apply Bayesian methods using MCMC algorithms in population ecology.
The first example deals with mark-recapture models to estimate survival proba-
bilities and shows how to incorporate covariates with maximum flexibility. The
second example shows how to estimate population density while accounting for
detectability by using distance sampling methods. Finally, the third case study
involves modeling count data using state-space models. We conclude with a short
discussion of various possible extensions to both the methods and software that we
have illustrated.

When presenting the examples, we include short illustrations in WinBUGS
(code is indicated using this typeface). For all three examples,
the relevant data and full WinBUGS code are given at http://eprints.st-andrews.
ac.uk/archive/00000450/.

2 The Bayesian Method Using MCMC Algorithms: Practical
Implementation in WinBUGS

Typical statistical problems involve estimating a vector of parameters, θ , using
the available data. The classical approach assumes that the parameters are fixed,
but have unknown values to be estimated. Classical maximum likelihood esti-
mates generally provide a point estimate of the parameter of interest. The Bayesian
approach assumes that the parameters themselves have some unknown distribu-
tion. The approach is based upon the idea that the experimenter begins with
some prior beliefs about the system, and then updates these beliefs on the basis
of observed data. Using Bayes’ Theorem, the posterior distribution of the parameters
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given the data π (θ |data) has density proportional to the product of the likeli-
hood of the data given the parameters L (data|θ ) and the prior distribution of
the parameters π (θ ): π (θ |data) ∝ L (data|θ ) × π (θ ). The prior distribution
represents the expert’s belief, before observing any data. If there is no strong
prior information on the parameters, vague priors are typically specified on the
parameters which represent very weak opinion concerning the model parameters.
Unfortunately, in most realistic applications the posterior distribution is generally
of such high dimension that little useful inference can be obtained directly. As a
consequence, while the joint posterior distribution (or the corresponding marginal
distributions) provide the best summaries of the parameters, point estimates and
uncertainty intervals are often more interpretable. It is the process of summarizing
the posterior that is the source of the computational complexity of the Bayesian
approach. Estimating the summary statistics of interest (for a vector of parame-
ters θ ) requires elimination of the other parameters. The Bayesian approach does
this through integration using the MCMC algorithm. The high-dimensional integral
associated with the posterior density is actually estimated using appropriate Monte
Carlo integration, which consists of constructing a Markov chain with stationary
distribution equal to the posterior distribution of interest. Then, once the chain has
converged, realizations can be regarded as a dependent sample from this distribu-
tion. WinBUGS implements powerful ways of constructing these chains, adapting
to a wide range of target (posterior) distributions and therefore allowing a large
number of possible models to be fitted. Further details on Bayesian modeling
using MCMC algorithms can be found in Gilks et al. (1996) and Congdon (2003,
2006). The WinBUGS software is currently freely available at http://www.mrc-
bsu.cam.ac.uk/bugs/.

A typical WinBUGS session proceeds as follows: the user specifies the model
to run in the form of the likelihood and prior distributions for all parameters to be
estimated. Data and initial values must also be provided. Following the validation
of the user specification, MCMC simulations are generated such that the stationary
distribution of the Markov chain is the posterior distribution of interest. Thus,
this algorithm provides a sample from the posterior distribution of interest from
which, it is possible to produce estimates of the posterior distributions using kernel
density estimates, and summary statistics of interest such as posterior medians
and credible intervals. Convergence diagnostics are also available either directly
in WinBUGS or using the R packages CODA (Plummer et al. 2004) or BOA (Smith
2004). Note that we will not discuss this crucial issue here, but recommendations
can be found in Kass et al. (1998). An important feature of WinBUGS is that it
comes with a tutorial designed to provide new users with a step-by-step guide
to running an analysis in WinBUGS. There are also a wide range of varied and
detailed examples, including, for instance: logistic regression with random effects,
analyses of variance with repeated measurements, meta-analyses and survival anal-
yses with frailties. It is often useful to call WinBUGS from other programs in order
to input complex sets of data and initial values, avoid specifying the parameters
to be monitored in each run, post-process the results in other software, display
complex graphics or perform Monte Carlo studies running WinBUGS iteratively
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in a loop. Together with data and WinBUGS codes, we give an illustration of
the use of the R (Ihaka and Gentleman 1996; R Development Core Team 2007)
package R2WinBUGS (Sturtz et al. 2005), as well as an illustration of how to
call WinBUGS from MATLAB using the package MATBUGS (http://www.cs.
ubc.ca/∼murphyk/Software/MATBUGS/matbugs.html) at http://eprints.st-andrews.
ac.uk/archive/00000450/. Other programs that can be used to interface to WinBUGS
are listed on the WinBUGS web page given above. General and complementary
introductions to WinBUGS are given in Congdon (2006) and McCarthy (2007). We
now turn to the analysis of real case studies to illustrate the use of WinBUGS. Note
that likelihoods and priors are implemented by defining their probability distribution
based on the model parameters using the tilde (∼) symbol. This notation will be used
throughout the paper.

3 Estimating Survival Using Mark-Recapture Data

As an illustration, we use data on the white stork Ciconia ciconia population in
Baden Württemberg (Germany), consisting of 321 capture histories of individuals
ringed as chicks between 1956 and 1971. From the 60 s to the 90 s, all Western
European stork populations were declining (Bairlein 1991). This trend is thought
to be the result of reduced food availability (Schaub et al. 2005) caused by severe
droughts observed in the wintering ground of storks in the Sahel region of Africa.
This hypothesis has been examined in several studies (Kanyamibwa et al. 1990;
Barbraud et al. 1999; Grosbois et al. in revision). In this section, we use WinBUGS
and several of its features to further explore the relationship between rainfall in the
Sahel and survival probabilities of the Baden Württemberg white stork population.

3.1 Simple Models

The standard Cormack–Jolly–Seber model (CJS, Cormack 1964; Jolly 1965; Seber
1965; Lebreton et al. 1992) considers time-dependence for the probability φi that
an individual survives to occasion i + 1 given that it is alive at time i , and for
the probability p j that an individual is recaptured at time j . The data consist of
encounter histories for each individual made of 1’s corresponding to recapture or
resighting and 0’s otherwise. These data can be efficiently condensed in the so-called
reduced m-array (e.g. Lebreton et al. 1992) which summarizes the data in the form
of the number of individuals released per occasion i, denoted Ri, and the number
of first recaptures given release at occasion i at the succeeding occasions j, denoted
mij. The m-array for the white stork data is provided in Table 1.

Conditioning on the numbers released and assuming independence among
cohorts, the CJS model likelihood can be written as a product of multinomial prob-
ability distributions corresponding to each row of the m-array. The probabilities
corresponding to the m-array cells are complex nonlinear functions of the survival
and detection probabilities. For example, the probability of the number of individ-
uals released at occasion 3 and recaptured for the first time at occasion 5, given the
number of released individuals at occasion 3 is:
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Table 1 The m-array for the White stork data set. The number of individuals released at occasion i
(Ri) and the number of first recaptures at occasion j, given release at occasion i (mij) are provided.
For example, 38 birds were released in 1969 among which, 22 were first recaptured in 1970, and
16 (= 38–22) were never observed again

Year of first recapture (19-)
Year of Number
release (19-) released 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

56 26 19 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 50 0 33 3 0 0 0 0 0 0 0 0 0 0 0 0 0
58 53 0 0 35 4 0 0 0 0 0 0 0 0 0 0 0 0
59 69 0 0 0 42 1 0 0 0 0 0 0 0 0 0 0 0
60 73 0 0 0 0 42 1 0 0 0 0 0 0 0 0 0 0
61 71 0 0 0 0 0 32 2 1 0 0 0 0 0 0 0 0
62 64 0 0 0 0 0 0 46 2 0 0 0 0 0 0 0 0
63 64 0 0 0 0 0 0 0 33 3 0 0 0 0 0 0 0
64 66 0 0 0 0 0 0 0 0 44 2 0 0 0 0 0 0
65 55 0 0 0 0 0 0 0 0 0 43 1 0 0 1 0 0
66 60 0 0 0 0 0 0 0 0 0 0 34 1 0 0 0 0
67 53 0 0 0 0 0 0 0 0 0 0 0 36 1 0 0 0
68 51 0 0 0 0 0 0 0 0 0 0 0 0 27 2 0 0
69 38 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0
70 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 1
71 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15

φ3(1 − p4)φ4 p5. (1)

For further details of fitting the CJS model in a Bayesian framework, see Brooks
et al. (2000). We start with a simple mark-recapture model, a simplification of the
CJS model where, based on the conclusions of previous studies (Kanyamibwa et al.
1990; Grosbois et al. in revision), the recapture probabilities are considered constant
over time.

3.1.1 Defining Priors

We define priors for the survival probabilities and the recapture probability as Beta
distributions with parameters 1 and 1 (equivalently uniform distributions between 0
and 1). Within WinBUGS, this is specified as:

for(iin1:ni){phi[i]∼dbeta(1,1)}
p∼dbeta(1,1)

where ni is the number of occasions of release in the study.

3.1.2 Constructing the Likelihood

The likelihood is defined as a product of multinomial distributions using the function

dmulti:

for(iin1:ni){m[i,1:(nj+1)]∼dmulti(q[i,],r[i])}
where the m object is the m-array matrix of data (augmented by the number of
individuals never seen again after release in the last column), nj is the number of
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recapture occasions within the study, r is the vector of released individuals and q is
a matrix of the m-array cells probabilities. The q matrix and r vector are calculated
in the WinBUGS code.

3.1.3 Results

The posterior medians of the survival probabilities are displayed in Fig. 1a, along
with their posterior 95% credible intervals.

To check that the temporal variations in the survival are worth considering, we
also consider a compromise approach in which survival is taken as constant over
time. Starting from the code of the previous model, one way to proceed would be
to consider one scalar parameter for the survival, specify the prior distribution as
for the detection probability and modify the likelihood accordingly. A neat trick
which avoids modifying the likelihood part of the code, is to define a single dummy
variable with a Beta prior and then set all survival probabilities equal to that variable:

#U(0,1)prior distribution for dummy variable

constant.phi∼dbeta(1,1)

#All survival probabilities equal to dummy variable

for(iin1:ni){phi[i]<-constant.phi}

3.1.4 DIC for Model Selection

As a preliminary model selection technique, we use the Deviance Information Crite-
rion (DIC; Spiegelhalter et al. 2002). One interpretation of the DIC is as a Bayesian
counterpart to the AIC for model selection. Essentially, the DIC is a diagnostic that
balances the requirements of model fit and low complexity. Typically, as models
get more complex by the addition of extra parameters, their fit improves. The DIC
diagnostic therefore penalizes additional parameters so that a parsimonious model is
chosen, and the smaller the DIC value, the better the compromise is. One advantage
is that the DIC can be calculated directly in WinBUGS from the chains produced by
an MCMC run. However, the DIC statistic is in its infancy and is controversial (see
the discussion papers following Spiegelhalter et al. 2002 and Celeux et al. 2006).
Here we consider the DIC as a preliminary tool for comparing competing models,
and we will discuss a more rigorous approach later, in the form of posterior model
probabilities.

Examining the DIC values in Table 2, we see that the time-dependent model
appears to outperform the constant model, and hence is better supported by the
data. This suggests that dependence upon time is needed to explain variations in
the survival probabilities. To better understand these findings, we will consider
in the next section environmental covariates as possibly explaining time variation
in the survival probabilities.
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Fig. 1 (a) White stork survival estimates from model with time-dependent survival probabilities
and constant detection probabilities; vertical bars represent 95% pointwise credible intervals; (b)
rainfall time series at meteorological station Kita in the Sahel
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Table 2 Models fitted to the white stork data. DIC is the deviance information criterion and pD is
the number of effective parameters. See text for details

Model DIC pD

Constant survival probabilities 174.3 1.9
Time-dependent survival probabilities 166.0 16.3
Covariate-dependent survival probabilities 159.4 3.1
Covariate-dependent as well as random-effect

survival probabilities
161.0 10.6

Nonparametric survival probabilities 158.1 7.4

3.2 Incorporating Linear Effects of Covariates

We now turn to the incorporation of covariates in the CJS model (North and Morgan
1979; Pollock et al. 1984; Clobert and Lebreton 1985; Lebreton et al. 1992; see
Pollock 2002 for a review). As we mentioned earlier, the variation in white storks
survival is likely to be related to rainfall variations. As expected, it can be seen that
the variations in the survival estimates (Fig. 1a) are correlated to Sahel rainfall vari-
ations (Fig. 1b). According to Williams et al. (2002, p. 373), we therefore consider
a model including a linear effect of the rainfall covariate on the logit scale:

logit(φi ) = log

(
φi

1 − φi

)
= β1 + β2xi , (2)

where xi is the value of the covariate between occasions i and i+1, and the β ’s are
regression parameters to be estimated. We use normal distributions with mean 0 and
large variance (106) as vague prior distributions for those parameters. The rainfall
measurements are standardized to improve mixing within the Markov chain. Note
that the standardization can be implemented in WinBUGS:

for(iin1:ni){cov[i]<-(cov[i]-mean(cov[]))/sd(cov[])}
where cov[i] denotes the covariate value in year i.

The code provided in the previous section is amended as follows:

for(iin1:ni){logit(phi[i])<-beta[1]+beta[2]*cov[i]}
for(jin1:2){beta[j]∼dnorm(0,1.0E-6)}
Note that in WinBUGS, normal distributions are described in terms of a mean and
precision, where precision = 1/variance. As a consequence, a variance of 1,000,000
corresponds to a precision of 0.000001. In addition, we note that this model makes
the strong assumption that variation in the survival probabilities is explained by the
covariate. This can be relaxed by the inclusion of additional random effects.

3.3 Incorporating Random Effects

We consider two models with random effects in this section, both addressing two
different questions. Note that incorporating random effects is also a way to share
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information among parameters, particularly improving estimates for years where
there is little information in the data (e.g. Harley et al. 2004).

First, specifying constant survival probabilities can be too restrictive to capture
sources of temporal variability, while estimating as many parameters as time inter-
vals may be too costly to assess specific time trends (Burnham and White 2002;
Royle and Link 2002). We consider a compromise model where time is treated
as a random effect, ε, with a normal distribution with mean 0 and variance σ 2.
We therefore estimate the mean logit survival probability, say μ, and the temporal
process variance in survival probability σ 2 (Gould and Nichols 1998; Burnham and
White 2002):

logit(φi ) = μ + εi . (3)

Considering random effects raises the problem of calculating the likelihood, which
is obtained by integrating over the random effect ε. This is, indeed, a problem
involving a high-dimensional integral that could be handled by using approxima-
tions (Chavez-Demoulin 1999), circumvented by resorting to asymptotic arguments
(Gould and Nichols 1998; Burnham and White 2002), or numerical integration (e.g.
importance sampling: Skaug and Fournier 2006 or Gaussian quadrature: Wintrebert
et al. 2005). By contrast, the Bayesian approach provides an exact solution to this
problem (Brooks et al. 2000, 2002, note that both references contain WinBUGS
code) and WinBUGS offers a powerful and flexible alternative to standard software
such as MARK (White and Burnham 1999) or M-SURGE (Choquet et al. 2005).

The specification of the model for the survival probabilities was as follows:

for(iin1:ni){
logit(phi[i])<-logitphi[i]

logitphi[i]∼dnorm(mu,taueps)

}
We consider an inverse-gamma distribution with parameters 0.01 and 0.01 and a
normal distribution with mean 0 and large variance (100) as vague prior distributions
for taueps and respectively mu:

taueps∼dgamma(0.01,0.01)

mu∼dnorm(0,0.01)

Note that a gamma distribution for the precision is equivalent to an inverse-gamma
distribution for the variance. In this case, these are typical specifications of vague
priors (see also Lambert et al. 2005; van Dongen 2006; Gelman 2006). The poste-
rior distribution of the variance can easily be obtained by monitoring the quantity
sigma2eps defined as:

sigma2eps<-1/taueps

Second, the inclusion of random effects allows there to be additional variability
within the survival rates that can be attributed to natural variability, or temporal
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variability not explained by the covariates within the study. This is a simple exten-
sion of the above covariate model. In particular, we specify an additional random
effect term denoted by �, which has a normal distribution with mean 0 and vari-
ance σ 2. In particular we model the survival rate to be of the form:

logit(φi ) = β1 + β2xi + εi . (4)

Then, the parameters to be estimated are the regression coefficients (�’s) and the
random effect variance parameter σ 2. In a particular application, Barry et al. (2003)
noticed that omitting the random effect can lead to overestimation of the significance
of the covariate on survival. To include these additional random effects, the code is
modified as follows:

for(iin1:ni){
logit(phi[i])<-logitphi[i]

logitphi[i]∼dnorm(f[i],taueps)

f[i]<-beta[1]+beta[2]*cov[i]

}
taueps∼dgamma(0.01,0.01)

In our model, slope estimates produced using Eqs. (2) and (4) to model survival are
very close to each other: posterior medians for the slope β2 were 0.36 in both cases
with 95% credible intervals [0.14; 0.58] and [0.20; 0.55] (see Fig. 2). This may
indicate that the random effect was not needed in the model, as the estimates tend
to confirm (the distribution of σ 2 places all of its mass near 0 with posterior median
0.04 and 95% credible interval [0.01; 0.22]), and indicated by the preliminary DIC
analysis (see Table 2).

A formal way of testing the null hypothesis σ 2 = 0 will be discussed later. In both
cases, the effect of rainfall is positive, indicating that the more it rained in the Sahel
zone, the better storks survived.

3.4 Nonparametric Modeling

There is another strong assumption made in Eq. (2), namely that the effect of
the covariate on the survival probability is linear on the logit scale. However,
nonlinear relationships involving the impact of environmental factors on population
dynamics may occur (Mysterud et al. 2001). More flexible models for the survival
probability are therefore needed. Gimenez et al. (2006a; see also Gimenez and
Barbraud this volume and Gimenez et al. 2006b for a similar approach applied
to individual covariates) have recently proposed a method in which the shape of
the relationship is determined by the data without making any prior assumption
regarding its form, by using penalized splines (P-splines; Ruppert et al. 2003). Here,
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annual white stork survival (a) without and (b) with a random effect
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we give details of how to implement their approach in WinBUGS. We consider the
following regression model for the survival probability φi :

logit(φi ) = f (xi ) + εi , (5)

where xi is the value of the covariate between occasions i and i+1, f is a smooth func-
tion and � i are i.i.d. random effects N

(
0, σ 2

ε

)
. The function f specifies a nonpara-

metric flexible relationship between the survival probability and the covariate that
allows nonlinear environmental trends to be detected. Following Gimenez et al.
(2006a), we use a truncated polynomial basis to describe f :

f (x) = β0 + β1x + . . . + βpx p +
K∑

k=1

bk(x − κk)p
+, (6)

where x is the covariate, and β0, β1, . . ., βp, b1, . . ., bK are regression coefficients
to be estimated, P ≥ 1 is the degree of the spline, (u)p

+ = u p if u ≥ 0 and 0 other-
wise, and �1 < �2 < . . . < �K are fixed knots. We use K = min

(
1
4 I, 35

)
knots to

ensure the desired flexibility, and let kk be the sample quantile of x’s corresponding
to probability k

K+1 . Those quantities are calculated outside WinBUGS in program
R. In particular, we model the relationships using a linear (P = 1) P-spline with
K = 4 knots implemented through the WinBUGS constants degree and
nknots. To avoid overfitting, we penalize the b’s by assuming that the coefficients
of (x − κk)P

+ are normally distributed random variables with mean 0 and variance
σ 2

b to be estimated. This is the reason why this approach is referred to as penalized
splines (Ruppert et al. 2003). Note that an alternative to P-splines called adaptive
splines (Biller 2000) is considered in the mark-recapture context by Bonner et al.
(this volume). The penalization is achieved by specifying:

for(kin1:nknots){b[k]∼dnorm(0,taub)}
where the variance parameter is given an inverse-gamma distribution (i.e. the preci-
sion has a gamma distribution):

taub∼dgamma(0.001,0.001)

A by-product of this approach is that the amount of smoothing is automati-
cally calculated as σ 2

b /σ 2
ε . To implement the P-splines model in WinBUGS, it is

convenient to express it as a Generalized Linear Mixed Model (GLMM), as shown
by Crainiceanu et al. (2005). If X is the matrix with ith row Xi = (

1, xi , . . . , x P
i

)T

and Z the matrix with the ith row Zi = (
(xi − κ1)P

+ , . . . , (xi − κK )P
+
)T

, then an
equivalent model representation of Eqs. (5) and (6) in the form of a GLMM is given
by Gimenez et al. (2006a):

logit(φ) = Xβ + Zb + ε, cov

(
b
ε

)
=

(
σ 2

b I 0
0 σ 2

ε I

)
(7)
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We are now able to implement the P-splines model in WinBUGS. To code Eq. (7),
we used:

for(iin1:n){
logit(phi[i])<-logitphi[i]

logitphi[i]∼dnorm(f[i],taueps)

f[i]<-inprod(beta[],X[i,])+inprod(b[],Z[i,])

}
The first statement corresponds exactly to Eq. (6), the second implements the
random effects distribution and the last one specifies the structure of the mean logit
survival, where the function inprod denotes the inner product of two vectors. The
first part of the last statement contains the fixed effect of Eq. (7), where beta[] is
the vector β = (β0, β1, β2), X[i,] is Xi and inprod(beta[],X[i,]) is the
polynomial part. The second part of the last statement contains the random effects,
where b[] is the vector b = (b1, b2, b3, b4), Z[i,] is Zi and inprod(b[],Z[i,])
is the truncated polynomial part of the regression in Eq. (7).

We then obtain matrices X and Z directly in WinBUGS, although this step could
be done in program R for example. Matrix X is obtained as:

for(iin1:n) {
for(lin1:degree+1) {
X[i,l]<-pow(covariate[i],l-1)

}
}
where pow is the power function, and pow(a,b) is ab. Matrix Z is obtained using:

for(iin1:n){
for(kin1:nknots){
Z[i,k]<-pow((covariate[i]-knot[k])*

step(covariate[i]-knot[k]),degree)

}
}
where the function step is used to obtain the truncation, where step(x) is 1 if
x is positive and 0 otherwise, so that Z[i,k] is positive only for xi > κk. For
further details see Crainiceanu et al. (2005) and Gimenez et al. (2006a). With the
possibility of fitting nonparametric models, one is obviously interested in testing
for the presence of nonlinearities in the survival probability regression. We address
this question by using the DIC and also using visual comparison for comparing the
model with a linear effect of rainfall as well as a random effect (see previous section)
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Fig. 3 Annual variations in white stork survival as a function of the standardized rainfall using
a nonparametric model. Medians (solid line) with 95% pointwise credible intervals (vertical solid
lines) are shown, along with the estimated linear effect (dotted line)

to its nonparametric counterpart. Figure 3 shows that the relationship between rain-
fall in Sahel and white stork survival can be taken as linear. This is confirmed by
DIC values that are similar for these two models (Table 2). Although we have clues
for linearity in this example, the issue of formally detecting nonlinearity deserves
further investigation.

3.5 Dealing with Missing Data

Bayesian modeling via MCMC also provides a simple method for handling data
with missing covariate values. Missing data might occur in capture–recapture
studies if the value of an environmental covariate is not recorded on all occasions
or if an individual covariate changes over time and can only be observed on the
occasions when the specific animal is captured (Bonner and Schwarz 2006). Essen-
tially, a completed data set is generated on each iteration of the MCMC algorithm
by specifying an underlying model for the covariate and imputing the missing
values of the covariate using the current values of the parameters, and then the
completed data set is used to update the parameter values. The result is a sample
from the joint posterior distribution of both the parameters and the missing data
values, which can be used in Bayesian inference. We illustrate the issue of dealing
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with missing data by estimating the effect of rainfall in the Sahel on the survival
of the white storks in Baden Württemberg after deleting the covariate for several
years.

As with the model incorporating random effects, computing the value of the
likelihood for a given set of parameter values requires integration with respect to
the missing covariates. This can be a complicated numerical problem, especially
if several values are missing, and is an obstruction to computing maximum like-
lihood estimates and their standard errors. From a Bayesian perspective, we view
the missing covariates as random variables to which we can assign a probability
distribution, just like the model parameters. We define a prior distribution for the
missing covariate values and then compute the posterior distribution of both the
parameters and the missing values conditional on the observed data. The likelihood
function used in the analysis is exactly the same function used when all covariate
values are observed, and if MCMC is used to obtain a sample from the posterior
distribution then no additional integration is required. Instead, a sample of probable
values for the missing covariates is generated by sampling new values on each iter-
ation of the MCMC algorithm in exactly the same way that model parameters are
sampled. The prior distribution of the missing covariate can be chosen to capture
prior beliefs about the values of the missing covariates and their relation to the rest
of the data. A simple, vague prior for the rainfall in year i, xi, is the normal distribu-
tion with mean 0 and large variance xi ∼ N

(
0, 106

)
. This prior distributes its mass

evenly over a very wide range of values and assumes independence of the rainfall
across the years of the study. Alternative prior distributions will relate the values
of the covariates to each other or to other quantities. Here we use a hierarchical
prior that models the change in the covariate over time as xi ∼ N

(
xi−1 + μ, σ 2

x

)
.

This asserts that the change in the covariate between adjacent years is normally
distributed with the same mean and variance for all years. Information from the
observed covariate values will then be used in determining the posterior mean and
variance of the missing values. To complete the prior distribution we must also
specify the marginal distribution of the first covariate value, x1, and the distributions
for the hyperparameters, μ and σ 2

x . Here we use the vague prior x1 ∼ N (0, 106) for
marginal prior of the first covariate, and the standard vague priors for a normal
mean and variance: μ ∼ N (0, 106) and σ 2

x ∼ �−1 (0.01, 0.01). Alternate prior spec-
ifications for the covariate values include autoregressive models, regression of the
covariate against time, or relation of the covariate to other variables that might have
been recorded. Adapting the WinBUGS code to account for the missing covariate
values requires two simple changes: (i) adding the prior distribution for the covari-
ates, and (ii) modifying the input data. The WinBUGS code for the hierarchical
prior is:

mu∼dnorm(0,1.0E-6)
taucov∼dgamma(.01,.01)
sigma2cov<-1/taucov
cov[1]∼dnorm(0,1.0E-6)
for(iin1:(ni-1)){
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mucov[i]<-cov[i]+mu
cov[i+1]∼dnorm(mucov[i],taucov)

}
The first three lines of code define the hyperpriors for the hyperparameters (μ is mu
and σ 2

x is sigma2cov). The 4th line defines the marginal prior for x1 and the for
loop defines the distribution of each of the remaining covariate values conditional
on the previous value (xi is cov[i]). Missing values in the input data are specified
by replacing the observed value with ‘NA’. Suppose that the rainfall is observed in
all years except year 15; the input vector for the covariate is:

cov=c(.79,2.04,1.04,-.15,-.01,-.48,1.72,-.83,-.02,.14,
-.71,.50,-.62,-.88,NA,-1.52)

Given this data and the model above, WinBUGS will simulate values for the
hyperparameters and the missing rainfall observation for year 15 on each MCMC
iteration and produce posterior summaries for these quantities, exactly as it does for
the other model parameters. Posterior summary statistics for a single run are shown
in Table 3.

Estimates of the survival probabilities are almost exactly identical to the esti-
mates produced from the full data; differences in the posterior means and standard

Table 3 Summary statistics for the posterior distributions of the model fitted to the white stork
data with survival as a function of rainfall: no missing value, missing value in 1 year (15), missing
value in 5 years (5, 6, 11, 12, 13). Reported statistics are the estimated mean, standard deviation
(SD), and the 95% credible interval [CI]

No missing value 1 missing value 5 missing values
Parameter Post. mean (SD) [CI] Post. mean (SD) [CI] Post. mean (SD) [CI]

φ1 0.74 (0.04) [0.65;0.83] 0.74 (0.05) [0.66;0.85] 0.74 (0.05) [0.65;0.84]
φ2 0.79 (0.05) [0.69;0.86] 0.79 (0.04) [0.70;0.86] 0.77 (0.05) [0.67;0.86]
φ3 0.75 (0.04) [0.67;0.82] 0.75 (0.04) [0.66;0.82] 0.74 (0.04) [0.66;0.82]
φ4 0.65 (0.04) [0.58;0.73] 0.66 (0.04) [0.58;0.74] 0.66 (0.04) [0.58;0.74]
φ5 0.64 (0.04) [0.56;0.71] 0.64 (0.04) [0.56;0.71] 0.62 (0.05) [0.52;0.72]
φ6 0.57 (0.05) [0.46;0.65] 0.57 (0.05) [0.48;0.65] 0.57 (0.05) [0.46;0.67]
φ7 0.79 (0.04) [0.70;0.86] 0.78 (0.04) [0.70;0.85] 0.77 (0.04) [0.68;0.85]
φ8 0.59 (0.04) [0.51;0.67] 0.59 (0.04) [0.51;0.68] 0.60 (0.05) [0.51;0.69]
φ9 0.69 (0.04) [0.61;0.76] 0.69 (0.04) [0.61;0.77] 0.69 (0.04) [0.62;0.77]
φ10 0.73 (0.05) [0.65;0.83] 0.73 (0.05) [0.65;0.83] 0.74 (0.05) [0.66;0.84]
φ11 0.61 (0.04) [0.51;0.69] 0.61 (0.04) [0.53;0.70] 0.63 (0.05) [0.52;0.72]
φ12 0.71 (0.04) [0.64;0.79] 0.71 (0.04) [0.63;0.79] 0.69 (0.05) [0.58;0.80]
φ13 0.61 (0.05) [0.51;0.69] 0.61 (0.05) [0.51;0.70] 0.62 (0.05) [0.51;0.71]
φ14 0.60 (0.05) [0.51;0.70] 0.60 (0.05) [0.51;0.70] 0.62 (0.05) [0.53;0.72]
φ15 0.56 (0.05) [0.45;0.65] 0.53 (0.07) [0.39;0.65] 0.57 (0.06) [0.44;0.67]
φ16 0.57 (0.07) [0.45;0.72] 0.58 (0.06) [0.46;0.71] 0.61 (0.07) [0.49;0.75]
β1 0.70 (0.09) [0.52;0.89] 0.71 (0.10) [0.53;0.91] 0.74 (0.10) [0.53;0.95]
β2 0.36 (0.11) [0.14;0.58] 0.35 (0.11) [0.14;0.56] 0.27 (0.13) [-0.03;0.51]
μ – −0.15 (0.35) [−0.85;0.56] −0.16 (0.38) [−0.91;0.64]
σ 2

x – 1.73 (0.84) [0.80;3.75] 2.03 (1.17) [0.75;5.10]
σ 2 0.06 (0.06) [0.01;0.22] 0.06 (0.06) [0.01;0.21] 0.07 (0.07) [0.01;0.27]
p 0.91 (0.01) [0.88;0.94] 0.91 (0.01) [0.88;0.94] 0.91 (0.01) [0.88;0.94]
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deviations are the magnitude as the MCMC error. There is a very slight increase in
the posterior variability of the regression coefficients, β1 and β2, however the lower
bound of the 95% credible interval for β2 is still well above 0 indicating a clear
positive link between rainfall and the storks’ survival. The estimated mean change
in rainfall is −.15 with 95% credible interval (−.85,.56) which suggests that there
is no consistent trend over time. The standard deviation of the change in rainfall
is relatively large which indicates that there is little association between rainfall in
adjacent years. Because of this, the posterior distribution for rainfall in the missing
year is uninformative about the true value.

When 5 missing values are generated, there are only minor differences in the
posterior distribution of the survival probabilities with small increases in the stan-
dard deviation apparent for the years with the covariate deleted (Table 3). This is not
surprising because the capture probabilities are very high so that most information
about the survival probabilities is derived from a direct comparison of the capture
histories rather than the regression on the covariate. There is, however, significant
change in the inference for the regression coefficients. The posterior mean of the
slope, β2, is closer to 0 in Table 3, though whether the mean is increased or decreased
depends on which years are missing the covariate. More importantly, the posterior
standard deviation is increased from 0.11 to 0.13 and the 95% credible interval
contains 0 which brings the effect of rainfall on survival into doubt.

To close this section, we note that we have only considered rainfall at a single
meteorological station in the Sahel region. However, rainfall measurements at other
stations are available, therefore possibly providing a better spatial representation of
the white storks’ wintering area. The question is then to determine which combi-
nation of the stations best explains the variation in survival. If we have 10 stations,
we need to perform model selection among a set of 1024 (210) possible candidates,
which would be intractable using classical model selection criteria such as AIC, BIC
or DIC. Fortunately, an alternative method can be used that allows model selection
among a large set of candidate models. An example is given later in the section
dealing with state-space modeling of count data, and we have made available the
WinBUGS code to implement this approach on the stork dataset.

4 Estimating Abundance and Population Density Using
Line-Transect Data

Line transect surveys are widely used to estimate the density and/or abundance of
wildlife populations. The methods, which are a special case of a general approach
called distance sampling, are described in detail, from a classical perspective, by
Buckland et al. (2001, 2004a). Observers walk along a set of randomly located
transect lines recording the perpendicular distance to all detected objects of interest
(usually animals) within some detected with some perpendicular truncation distance
w. Not all objects within distance w are assumed to be detected; rather a (semi-)
parametric model is specified for the probability of detecting an object given it is at
perpendicular distance y from the transect line. Under various assumptions (detailed
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in Buckland et al. 2001), it is then possible to derive the probability density function
f(y) of observed distances. This can be fitted to the observed distance data using
maximum likelihood methods, and used to correct for the objects missed during the
survey. The standard formula for estimating object density, D, is (Buckland et al.
2001):

D̂ = n f̂ (0)

2L
(8)

where n is the number of objects detected, L is the total length of the transect lines
and f̂ (0) is the estimated probability density function of observed distances evalu-
ated at zero distance.

As an illustration, we consider a line transect study where a known number
of wooden stakes are placed in a sagebrush meadow east of Logan, Utah
(Buckland et al. 2001). The true density of stakes is known to be 37.5 stakes/hectare.
Eleven different graduate students walked a 1,000 m long transect through the study
area independently of one another and recorded perpendicular sighting distances to
stakes. One student’s data are given in Table 4.

These data consist of 68 observations with a truncation width, w, of 20 m. The
same data set is analyzed by Karunamuni and Quinn (1995) who propose a Bayesian
approach for line transect sampling. For the sake of simplicity, we make the same
assumptions as Karunamuni and Quinn (1995), i.e. we assume that the probability
density function f(y) for the detection distances is half-normal and that the data are
neither truncated nor grouped into distance intervals (see Buckland et al. 2001 for
more on the latter). Thus,

f (y) =
√

2/πσ 2 exp
(−y2/2σ 2

) = c
√

λ exp
(−λy2/2

)
, y > 0 (9)

where c = √
2/π and λ = 1/σ 2. Given n detection values, y1, . . . yn , the maximum

likelihood estimator of f (0) is then given by:

f̂ (0) =
√

2n

π
∑

y2
i

= c

(
T

n

)− 1
2

(10)

where T = ∑
y2

i . The maximum likelihood estimator of the density is given by
Eq. (8), above.

Table 4 Sequence of perpendicular distance values for the Stakes line transect example (in
meters)

2.02 0.45 10.40 3.61 0.92 1.00 3.40 2.90 8.16 6.47
5.66 2.95 3.96 0.09 11.82 14.23 2.44 1.61 31.31 6.50
8.27 4.85 1.47 18.60 0.41 0.40 0.20 11.59 3.17 7.10

10.71 3.86 6.05 6.42 3.79 15.24 3.47 3.05 7.93 18.15
10.05 4.41 1.27 13.72 6.25 3.59 9.04 7.68 4.89 9.10

3.25 8.49 6.08 0.40 9.33 0.53 1.23 1.67 4.53 3.12
3.05 6.60 4.40 4.97 3.17 7.67 18.16 4.08
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Adopting a Gamma prior distribution with parameters a and b for λ, Karunamuni
and Quinn (1995) show that the posterior distribution of λ is also a Gamma distribu-

tion with parameters a + n
2 and

(
1
b + T

2

)−1
. Although classical Monte Carlo simula-

tions could be used to simulate observations from the posterior distribution of λ, we
use WinBUGS to draw random samples using MCMC techniques. This is motivated
by generalizations to other probability density functions for the detection distances
as well as spatial modeling for which explicit posterior distributions are difficult to
obtain. We use the so-called “zeros trick” to implement the half-normal likelihood
distribution because it is not included in the list of standard WinBUGS sampling
distributions. This method consists of considering an observed data set made of
0’s distributed as a Poisson distribution with parameter φ so that the associated
likelihood is exp(−φ). Now, if we set phi[i] to − log(L(i)) where the likelihood
term L(i) is the contribution of observed perpendicular distance y[i], then the
likelihood distribution is clearly found to be L(i). See the WinBUGS manual for
further details. The WinBUGS code is as follows:

for(iin1:n) {
zeros[i]<-0
zeros[i]∼dpois(phi[i])#likelihood is exp(-phi[i])
#-log(likelihood)
phi[i]<--(log(2*lambda/3.14)/2-lambda*pow(y[i],2)/2)

}
Karunamuni and Quinn (1995) conduct a sensitivity analysis showing that changing
values of the prior distribution has little effect on the posterior results. To allow
comparisons with Karunamuni and Quinn’s results, we use a = b = 0.1 in our
analyses. For parameter λ, we therefore specify a gamma distribution with both
parameters set equal to 0.1:

lambda∼dgamma(0.1, 0.1)

Finally, we calculate an estimate of and the density D (Eqs. (8) and (10)):

f0<-sqrt(2*lambda/3.14)

D<-(n*f0)/(2*L)

The results are given in Table 5 and show close agreement with the Bayesian anal-
ysis of Karunamuni and Quinn (1995).

Table 5 Results for the Stakes line transect data analysis

Standard Standard
f(0) deviation D deviation

True 0.110 0.00375
Maximum likelihood Estimator 0.098 0.00332
Karunamuni and Quinn (1995) 0.097 0.008 0.00325*

0.00330**

This study 0.097 0.009 0.003301 0.000292
*Relative squared error loss, **absolute squared error loss.
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5 State-Space Models of Count Data: Assessing
Density Dependence

In this section, we describe the use of WinBUGS to fit population models of density
dependence that simultaneously account for both process and observation error. The
example data we use are annual estimates of the population size of North Amer-
ican duck species on their breeding grounds from 1955 to 2002, derived from the
Waterfowl Breeding Population and Habitat Survey (WBPHS, US Fish and Wildlife
Service 2003).

Assessing the importance of population size or density in regulating popula-
tion growth rate is fundamental to population biology, ecology and conservation.
However, devising robust tests for this so-called “density dependence” has been
controversial (e.g. Lebreton this volume). One problem has been that available data
on population sizes or densities are almost always estimates, with some level of
observation error, and ignoring this observation error can lead to biased tests (e.g.
Shenk et al. 1998).

A potential solution is to use a state-space modeling framework, where one can
explicitly specify models for both the underlying population dynamics that change
population size over time and the observation process that links true population size
to the estimates. Such models describing density dependence were constructed by
Jamieson (2004) and Jamieson and Brooks (2004). Here we take as an example their
“logistic” model for the population dynamics (“state process model”), which can be
written as follows:

nt = nt−1exp

⎛

⎝β0 +
k∑

j=1

β j nt− j + σpz p,t

⎞

⎠ (11)

where nt is the population size at time t (t = 1. . .,T), β0 determines the expected
rate of population growth when the population size is zero, β j determines the rate at
which growth is changed depending on population size in time period t−j, zp,t is a
Gaussian N(0,1) random variable that represents un-modeled variation in population
growth between time periods (“process error”) and σ p determines the size of these
random fluctuations. This is coupled with an “observation process model”, which
can be written

yt = nt + so,t zo,t (12)

where yt is the estimated population size at time t, zo,t is a Gaussian N(0,1) random
variable that represents measurement error and so,t, which is assumed known (it
is provided as part of the WBPHS data, for example), determines the size of the
measurement errors.

The state-space model defined by Eqs. (11) and (12) is non-linear and non-
normal (because of Eq. (11)), and therefore is difficult to fit using standard frequen-
tist methods, such as the Kalman filter (although see de Valpine 2002, 2003;
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de Valpine and Hastings 2002; Besbeas et al. 2005; Besbeas et al. this volume).
Jamieson (2004) and Jamieson and Brooks (2004) describe how the model can
be formulated in a Bayesian context, and how the parameters may be estimated,
for fixed k, using MCMC. Further, they show how a recent extension of the
MCMC algorithm – Reversible Jump MCMC (RJMCMC; Green 1995) – can be
used to compute the posterior probability for each of a set of possible values
of k, and thereby estimate the probability of the presence of density dependence
(i.e., the probability that k>0) in a population (although we note that autocorre-
lated process error can affect such assessments – see Lebreton this volume). For
the use of RJMCMC in population ecology, see for example, King and Brooks
(2002a, b, 2003, 2008) and King et al. (2006). RJMCMC can also be used to
produce model-averaged predictions of future population size. Jamieson and Brooks
(2004) apply these methods using custom-written MCMC and RJMCMC samplers,
implemented in the computer language C, to data for 10 species of duck from the
WBPHS. Three species (Northern Pintail Anas acuta, Redhead Aythya americana
and Canvasback Aythya valisineria) appear to show some form of density depen-
dence.

Similar models were fitted to Canvasback and Mallard data from the WBPHS
(as well as simulated data) by Viljugrein et al. (2005) using WinBUGS, although
code was not included with that paper. An additional covariate, number of breeding
ponds, was included and model discrimination was via DIC. In that paper, both
species were found to show density dependence.

Our aim is to demonstrate how these models may be fitted using WinBUGS, to
investigate the use of the beta version of the RJMCMC plug-in for WinBUGS, and
to validate the results by comparing them with the independent sampler and C code
written by Jamieson. We present some of this work here; it is described in detail in
Parker et al. (in prep.). To save space, we only present results for Canvasback.

5.1 Logistic Model

For computational convenience, we re-parameterized the model presented above so
that time periods t = 1,. . ., k are the times before data are available and t = k + 1,
. . ., k + T are times when data were collected. Note that missing data are easily
accommodated in this framework. We also turned Eq. (11) into an additive model
by log-transforming:

pt = pt−1 + β0 +
k∑

j=1

β j exp(pn− j ) + σpzt (13)

where pt = log(nt).
Bayesian methods require specification of prior distributions on all unknown

quantities; for the purposes of comparison we used exactly the same distributions
as used in Chapter 2 of Jamieson (2004; note these are slightly different from
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those of Jamieson and Brooks 2004): β j ∼ N (0, 100) for j = 0, . . . , k, σ 2
p =

�−1(0.001, 0.001) and nt ∼ N (0.540, 0.130) for t = 1, . . . , k. Note that numbers
of ducks are expressed x106 and that the distribution is truncated so that nt > 0 (by
setting all sampled values of nt to the maximum of the value drawn from the above
normal distribution and 0.00001). Priors are not required on nt, t = k + 1,. . ., k + T
due to the Markovian structure of the state process model: priors for these quantities
are implicitly specified when priors are set for nt, t = 1,. . ., k. (See Jamieson 2004
for an in-depth discussion of this; see also de Valpine 2002 and Maunder et al. this
volume).

Our WinBUGS program was based on code originally written by Steve Brooks
for a workshop on Bayesian methods (Brooks et al. 2005). The key parts are speci-
fication of the observation process equation (Eq. (12)) and system process equation
(Eq. (13)). The observation process equation code is:

for(tin(k+1):T){
prec[t]<-1/(s[t]*s[t])
m[t]∼dnorm(n[t],prec[t])

}
while the system process equation code is:

for(tin(k+1):T){
#mmisusedtobuildupequation3-notethatb[1]hereis
#beta 0inequation1,b[2]isbeta 1,etc.
mm[1,t]<-p[t-1]+b[1]
for(jin1:k){mm[j+1,t]<-mm[j,t]+b[j+1]*exp(p[t-j]) }
#Expectedvalueofp[t]
Ep[t]<-mm[k+1,t]
#Realizedvalue,withprocesserror-tauis1/sig pˆ2
p[t]∼dnorm(Ep[t],tau)

}
Predictions of future states, for example up to time T + 10, could easily be obtained
by replacing the first line of the above loop with

for(tin(k+1):(T+10)){
Summaries of the posterior parameter estimates for Canvasback for k = 1,2,
and 5 and runs with burn-in of 50,000 and then 1,000,000 samples are given in
Table 6, as are results from the same model reproduced from Jamieson (2004,
Table 2.5).

The results are very similar, with differences within the bounds of Monte-Carlo
variation. Convergence and mixing were relatively slow; diagnostics are reported in
Parker et al. (in prep.).

A naı̈ve way to look for evidence of density dependence is to examine posterior
credibility intervals (CI) on the β parameters. For example, in the first-order time
lag model (k = 1), the 95% posterior CI does not contain 0 throughout, providing
support for the notion of first order density dependence in this species.
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5.2 Model Comparison

The above program was extended to allow selection among models using RJMCMC.
This algorithm searches over the different models, given the observed data, so that
the number of possible models is no longer restrictive. We consider an extension
to the standard Bayes Theorem, where we simply consider the model itself to be
a (discrete) parameter. The standard formula still applies, but now the posterior
distribution is defined over both the parameter and model space. Integrating over
the parameters we are able to calculate the marginalized posterior probability for
each model. However, this integration is analytically intractable and so we resort
to an MCMC-type approach. The standard MCMC algorithm cannot be used in the
presence of model uncertainty, and RJMCMC is therefore used to explore simul-
taneously the parameter and model space within a single Markov chain. We used
the Jump extension to WinBUGS (Lunn et al. 2006) to implement RJMCMC. This
extension allows the sampler to move between models that include all possible
combinations of a set of potential covariates – in our case β1 to βV where V is
the maximum time lag allowable (set to 5 in our code). k indexes the number of β

parameters (excluding β0, which is in all models) in the model for a particular draw
from the chain (i.e., the dimension of the model). In the code, an indicator variable
id, indicates which particular model is in a particular draw – for example if id was
10101, that would indicate that the parameters β1, β3, and β5 were in the model for
that draw (and therefore that k = 3).

In the Jump protocol one specifies a prior on the models by specifying a prior
distribution on k. The following gives a prior probability of 0.5 that any β j (0 > j ≥
V) is in the model (Lunn 2006, p. 3):

k∼dbin(0.5,V)

We then specify a design matrix (see Lunn 2006, Eq. (1) with the number of rows
equal to the number of time periods and V columns. The elements of each row
correspond to the sum in Eq. (13). In the following code, C is the first time period
about which we make posterior inferences in states – i.e., C=V+1.

for(tinC:T){
for(jin1:V){
X[(t-C+1),j]<-exp(p[t-j])

}
}
To set up the reversible jump, we use the two Jump-specific commands
jump.lin.pred and jump.model.id, as follows:

#Jumpprocess
psi[1:(T-C+1)]<-jump.lin.pred(X[1:(T-C+1),1:V],k,taub)
id<-jump.model.id(psi[1:(T-C+1)])

where psi is a vector representing the current values of the linear predictor (Lunn
2006, Eq. (1), and taub is the prior precision on the β parameters (in our case
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1/100; note that the prior on all � parameters is assumed to be multivariate normal,
with mean 0 and the specified precision – this distribution is fixed by the software).

We note that the priors specified on the parameters can influence the corre-
sponding posterior model probabilities. In other words the posterior model proba-
bilities are often sensitive to the prior parameter specification. Thus we recommend
that a prior sensitivity analysis should always be performed, and care taken when
specifying the priors for the parameters, to represent sensible prior beliefs.

Lastly, we specify the system process equation in terms of the psi variable:

for(tinC:T){
#Expected value of p[t]
Ep[t]<-p[t-1]+psi[(t-C+1)]
#Realized value, with process error - tau is 1/sig pˆ2
p[t]∼dnorm(Ep[t],tau)

}
Posterior model probabilities can be calculated from the proportion of time the chain
visited each model of interest. This information can be obtained from the Jump
menu that is added to the WinBUGS interface when the Jump extension is installed,
and reports the proportion of time spent in each value of the id variable. Note,
however, some of the models included in the chain are not of interest – we are
only interested in models that for any given k contain parameters β1,. . ., βk: for
example with k = 2 we are only interested in id 11000, and not 10100, 01100, etc.
We therefore select out from the list of id’s only those we are interested in, and
re-normalize so that the proportion of times in these models of interest sum to 1.
These proportions are then estimates of posterior model probability.

Model-averaged estimates of other unknown quantities, such as the nts, can also
be produced by WinBUGS, but just as with the ids above, these contain both models
we are interested in and those we are not. It is necessary to save the value for
the variable of interest generated in each sample (the CODA button in the sample
monitor tool will do this), as well as the corresponding id values, and then select out
only those samples that were generated under id values corresponding to models of
interest.

Posterior model probabilities for Canvasback for runs with burn-in of 50,000 and
then 1,000,000 samples are given in Table 7, as are results from the equivalent model
from a run of the Jamieson C code using burn-in of 20,000 and 100,000 samples

Table 7 Posterior model probabilities for k = 0, . . ., 5 for the logistic model of Jamieson (2004)
applied to Canvasback data

k WinBUGS Jamieson C code

0 0.279 0.265
1 0.685 0.697
2 0.034 0.036
3 0.002 0.002
4 0.000 0.001
5 0.000 0.000
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(a run of the Jamieson code was required because posterior model probabilities were
not given for these priors in Jamieson 2004).

While the results are similar, they are not identical. This is likely to be caused by
a small difference between the implementations: in the algorithm of Jamieson, the
acceptance probabilities for between-model moves do not depend on the priors for
the β parameters (Jamieson 2005, Section 3.1.1), while in the WinBUGS algorithm
it is not possible to achieve such tuning, and in the default algorithm the priors
on the β parameters do affect acceptance rates. Despite these minor differences,
the overall conclusions are the same: the best supported model (posterior model
probability 0.6–0.7) is the one with first-order density dependence.

6 Discussion

In this paper, we have seen how Bayesian theory can be applied to stochastic
models for population ecology using MCMC algorithms as implemented in program
WinBUGS.

In a mark-recapture data modeling context, WinBUGS can handle many complex
models, without additional effort once the likelihood has been written down. This
includes (i) random effects that allow unexplained residual variance to be coped with
when dealing with covariates, automatic calculation of the amount of smoothing
when splines are to be used but also temporal autocorrelation to be incorporated
(Johnson and Hoeting 2003), (ii) missing data in the covariate values to be handled
and (iii) variable selection. Note that those advantages may also be applied in
distance sampling models in order to incorporate covariates in the modeling of the
detection function (Marques and Buckland 2003; Marques et al. 2007). Random
effects can also be used to address spatial variation in both families of models,
allowing the survival and the detection function to depend on spatial coordi-
nates (e.g. longitude and latitude) using splines in two dimensions (Gimenez and
Barbraud this volume) or a combination of various random effects (Grosbois et
al. in revision) or alternatively, using the geostatistical tools as available through
the GeoBUGS adds-on of WinBUGS and the possibility of interfacing WinBUGS
with Geographic Information System (GIS) software (WinBUGS manual; see Wyatt
2003 for an application in fisheries).

In our experience, using R or MATLAB to call WinBUGS makes its use much
easier for pre- and post-processing data. Note also that an open-source version
of the WinBUGS code has recently been published as OpenBUGS. Among other
advances, it can be made to perform block updates (i.e., update multiple unknown
quantities simultaneously), which might be of interest for experienced program-
mers. OpenBUGS also runs under Linux.

Our introduction may make WinBUGS appear like a panacea. However, like all
computer programs, WinBUGS is not always the perfect tool for Bayesian methods
in population ecology, and developments are taking place to improve it. However,
as can be appreciated from the three case-studies, it is capable of producing infor-
mative results for sophisticated models. In using WinBUGS, one should be aware



WinBUGS for Population Ecologists 909

of the following potential problems. First, one should be aware that experience is
needed to be able to debug WinBUGS programs. Also, the computational burden
may be discouraging, and it is sometimes preferable to resort to Fortran or C++
to implement efficient MCMC algorithms for specific problems. Finally, although
user-specific functions can be programmed (see the WinBUGS manual), there are
no tools for matrix calculus so that, e.g., multistate mark-recapture models are diffi-
cult to implement (see however Durban et al. 2005 for closed populations). Inter-
estingly, a state-space modeling approach for data on marked animals proposed
by Gimenez et al. (2007) might be a solution to this problem (see also Royle [in
press] for a similar state-space formulation allowing modeling individual effects).
More generally, in line with Buckland et al. (2004b; see also Newman et al. 2006;
Buckland et al. 2007), we believe that state-space modeling can provide a convenient
and flexible framework for specifying many stochastic models for the dynamics
of wild animal populations. In doing so, WinBUGS may provide an efficient and
flexible tool to fit such models, possibly nonlinear and non Gaussian – as has been
realized for several years in fisheries (Meyer and Millar 1999; Millar and Meyer
2000; Rivot and Prévost 2002; Lewy and Nielsen 2003; Rivot et al. 2004). We note
that other fitting algorithms, such as variations on the Kalman filter, Monte-Carlo
particle filter, Laplace approximation, importance sampling may also be applicable
(see Buckland et al. 2007 for a review). These ideas open the area to numerous
applications including the integration of several sources of information (recovery
and recapture data, see Catchpole et al. 1998; count data and demographic data, see
Besbeas et al. 2002, 2005, 2008; Brooks et al. 2004; Maunder 2004; Schaub et al.
2007).

We end by providing a non-comprehensive list of applications of Bayesian
methods in population ecology. An important advantage of the Bayesian frame-
work is the possibility to incorporate prior information in the analysis. McCarthy
and Masters (2005a) show how to use prior information on body mass to improve
survival estimates using the CJS models, while Pearce et al. (2001); Yamada et al.
(2003); Kuhnert et al. (2005) and Martin et al. (2005a) show how to integrate expert
knowledge. Several authors have dealt with important issues regarding the speci-
fication of vague priors (Lambert et al. 2005; van Dongen 2006; Gelman 2006),
assessment of the sensitivity of the posterior distribution to the specified prior
distribution (Millar 2004; Millar and Stewart 2005), parameter identifiability in a
Bayesian context (Gimenez et al. this volume) and goodness-of-fit tests (Brooks
et al. 2000; Barry et al. 2003; Michielsens and McAllister 2004). Meta-analyses
have been successfully carried out to estimate demographic parameters (Tufto et al.
2000) and assess animal movement (Jonsen et al. 2003). Further applications of
WinBUGS to analyze animal movement data can be found in Morales et al. (2004)
and Jonsen et al. (2005). WinBUGS can be used to address issues associated with
binomial and Poisson data such as spatial autocorrelation (Thogmartin et al. 2004;
Wintle and Bardos 2006), imperfect detection (Royle and Dorazio 2006), hetero-
geneity in the detection process (Durban and Elston 2005), excess of zeros (Martin
et al. 2005b; Ghosh et al. 2006), observer effects (Thogmartin et al. 2004), detecting
trends (Link and Sauer 2002) and missing data (Lens et al. 2002). WinBUGS has
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allowed a better understanding of the impact in assessing complex effects of density-
dependence and predicting the impact of climate change and human exploitation in
population dynamics (Bjornstad et al. 1999; Saether et al. 2000; Stenseth et al. 2003;
Conroy et al. 2005). Regarding model selection, alternatives to DIC and RJMCMC
using WinBUGS are given by Ntzoufras (2002; Gibbs variable selection), Link
and Barker (2006; Bayesian information criterion; see also Link and Barker this
volume) and Ghosh and Norris (2005; minimum posterior predictive loss). Finally,
Link and Barker (2005) considered association among demographic parameters
(e.g. recruitment and survival) in analysis of open population mark-recapture data
(see also Cam et al. 2002 and Wintrebert et al. 2005 when detectability is equal
to one).

In conclusion, we hope this paper will encourage ecologists to explore the poten-
tial of the flexible and useful WinBUGS software, and the methods underlying it,
for carrying out future applications.
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