Weak Identifiability in Models
for Mark-Recapture-Recovery Data
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Abstract The percentage overlap between prior and posterior distributions is
obtained easily from the output of MCMC samplers. A 35% guideline for overlap
between univariate marginal prior and posterior distributions has been suggested as
an indicator of weak identifiability of a parameter. As long as uniform prior distri-
butions are adopted for all of the model parameters, then the suggested guideline
has been found to work well for a range of models of mark-recapture-recovery
data, where all the parameters are probabilities. Its use is illustrated on models
for ring-recovery data on male mallards, and the Cormack-Jolly-Seber model for
capture-recapture data on dippers.
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1 Introduction

1.1 Parameter Redundancy and Identifiability

Models may be devised for mark-recapture-recovery (mrr) data without all the
parameters being estimable. A model is said to be identifiable if no two values of
the parameters give the same maximum likelihood for the data, while parameter-
redundant models can be re-expressed in terms of fewer than the original number of
parameters (Catchpole and Morgan 1997), resulting in that case in likelihood sur-
faces with completely flat ridges or surfaces. The obvious way to check for param-
eter redundancy for a particular application is to examine the likelihood surface by
computing the rank of the observed Hessian (Viallefont et al. 1998; Formann 2003).
Catchpole and Morgan (1997) considered the rank of the model itself, regardless
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of the data, using symbolic algebra. It is then possible to determine how many and
which parameter combinations can be estimated (Catchpole et al. 1998; Catchpole
et al. 2001). Applications of this approach can be found in, for example, Gimenez
et al. (2003), Gimenez et al. (2005), Schaub et al. (2004), Nasution et al. (2004) and
Kéry et al. (2005). In addition, Catchpole et al. (2001) considered near redundant
models, which, while formally not parameter-redundant, can in some cases produce
estimates of certain parameters with poor precision.

1.2 Weak Identifiability

The use of computational Bayesian methods for model-fitting in biology has
increased in recent years (Ellison 2004; Clark 2005), including population ecology
(Brooks et al. 2000a, 2002). With the increase in computing power, the temptation
is to fit more and more complex models using MCMC methods. However, models
that are parameter-redundant may be fitted using Bayesian methods, as a result
of the information in the prior distribution, and a dramatic illustration of this is
provided by Brooks et al. (2000b). Let us write a marginal posterior distribution as
7(0]Y), for data Y, parameter  and prior distribution p(#). Then the parameter 6
is said to be weakly identifiable when 7 (0|Y) ~ p(9); see Gelfand and Sahu (1999)
and Garrett and Zeger (2000).

Thus in Bayesian analysis, weak identifiability arises when data supply little
information about certain parameters. Weak identifiability is the counterpart of near
redundancy in a classical analysis, and poses appreciable problems for a Bayesian
approach. For example:

® conclusions based on the examination of weakly identified parameters can be
misleading (Garrett and Zeger 2000);

¢ weak identifiability may result in strong correlations between parameters in the
posterior distribution, which in turn implies poor mixing in the MCMC samples
and very slow convergence (Carlin and Louis 1996; Rannala 2002);

® cven with large sample sizes, the likelihood may be unable to overcome the prior
(Neath and Samaniego 1997);

® a too-informative prior can drive posterior inference, while a prior too close to
improper can yield improper posteriors (Gelfand and Sahu 1999; Bayarri and
Berger 2004).

There are various ways to check for weak identifiability:

® one might conduct a classical test for parameter redundancy;

® one might undertake a detailed prior sensitivity analysis;

¢ one can examine the correlation matrix of the parameter estimators in the poste-
rior distribution;

® as in Garrett and Zeger (2000), one can display the marginal prior/posterior pair
plots as a visual aid; -

® one can evaluate numerically, and calibrate, the overlap for each marginal prior-

posterior pair.
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Gimenez et al. (2006) have compared these alternative procedures, and found
that the last two of these methods are simple and effective. We outline this approach
in Section 2, and then illustrate its use on a data set resulting from marking male
mallards, Anas platyrhynchos, in Section 3. In Section 4 the method is applied to a
data set of capture-recapture data on dippers Cinclus cinclus. In Section 5 we exam-
ine the alternative approach of sensitivity analysis, while in Section 6 we present
correlations between parameter estimates. The paper ends with general discussion
in Section 7.

2 Testing for Weak Identifiability

2.1 Theory

In order to check the weak identifiability of any parameter 6, Garrett and Zeger
(2000) compared its marginal prior distribution to its marginal posterior distribu-
tion by directly evaluating the overlap between the two distributions. This quantity,
denoted 14, can be computed as

Tp =/min(p(9),ﬂ(9lY))d9- ¢

Values of 7, lie in the interval [0,1], and when 74 is above some pre-determined
threshold then 8 is declared weakly identifiable. The ad-hoc threshold of 0.35 has
been suggested by Garrett and Zeger (2000), and used in applications of this method.

2.2 Bayesian Inference

The mrr models that we shall consider only involve probabilities, and in this paper
we have only presented results arising from taking uniform distributions on the
interval [0,1] as priors for all of the model probabilities. Based on preliminary runs,
we generated four chains of length 50,000, discarding the first 25,000 as burn-in.
Convergence was assessed using the Brooks/Gelman/Rubin statistic (Gelman 1996),
and we found that in general the Markov chains exhibited good mixing and moderate
autocorrelation. ‘

Simulations were performed using WinBUGS (Gimenez et al. 2008; Lunn et al.
2000), and the R (R Development Core Team 2008) package R2WinBUGS (Sturtz
et al. 2005) was used both to call WinBUGS and examine results in R.

2.3 Practical Computation of T

The ‘computation of t follows stiggestions by Schmid and Schmidt (2006):
we estimate the posterior distribution 7(f|Y) by means of a kernel density
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estimator f based on the MCMC generated values x;, ;| = 1,...,n (we took

n = 1000, corresponding to the last 1000 MCMC values obtained), namely

o 1 1 —x;

fx) = —Z uy o el where K is a kernel function centered at the
n h h

i=1

data points x; and 4 is the bandwidth. We
2

used a standard Gaussian kernel

1 X 1
K(x) = ex (— —) with its associated optimal bandwidth 4* = 1.06 & n’s,
( T 2 p

7
where & = min (standard deviation, interquartile range/1.34) (Silverman 1986,
page 48).

We then obtained a sample from the distribution of the min func
tion (1) by calculating y; = min (1, f(x;)) for all ;. Finally,
mation to 7 is given by £ = Z yi/n.

tion in Equa-
a Monte Carlo approxi-

i

3 Mark-Recoveries: Application to the Freeman-Morgan Model
3.1 The Freeman-Morgan Model

As an example of the approach, we consider a model developed by Freeman and
Morgan (1992; FM mo

del hereafter) involving the survival probability ¢, ; of birds

in their first year of life, possibly varying with the year i, the probability ¢, of
survival of adult individuals (ie. of age > 1), taken as constant over time, and
constant probabilities of rep

orting of rings from dead birds in their first year \;, or
older A,.

Taking the FM model as an illustration, Catchpole et al. (2001) showed that prob-
ability models that are formally not parameter redundant may behave poorly when
fitted to data. The main reason for this near-

singularity is that the FM model con-
tains as a sub-model the model with constant first year survival, which is parameter
redundant. As a consequence, the smallest ei

genvalue of the expected information
matrix may be very small rather than zero as is the case in parameter-redundant
models.

When Catchpole et al. (2001) applied this model to ring-
obtained from animals marked as young,
obtained, with unrealistic estimates of D1
errors.

We fitted the FM model to data on mallards, with 9 years of recovery (Table 1).
The data are the result of a ringing study of males ringed as young in the San Luis
Valley, Colorado, 1963-1971; Brownie et al. (1985), p48.

Displays of the marginal prior-posterior distribution pairs for the FM model
parameters are given in Fig. 1, and the corresponding estimated percentages of
overlap are given in Table 2, corresponding to the shaded areas in Fig. 1.

The marginal prior-posterior distribution pairs in Fig. 1 clearly suggest that all
parameters except two may exhibit weak identifiability problems, viz., ¢, and A,
which have relatively sharp marginal pg‘sterior distributions. Examination of Table 2
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Table 1 Recovery data for male mallards Anas platyrhynchos

Year of Year of recovery (—1962) Number never
ringing 1 2 3 4 5 6 7 8 9 seen again
1963 83 35 18 16 6 8 5 3 1 787
1964 103 21 13 11 8 6 6 0 534
1965 82 36 26 24 15 18 4 927
1966 153 39 22 21 16 8 942
1967 109 38 31 15 1 1005
1968 113 64 29 22 927
1969 124 45 22 940
1970 95 25 786
1971 38 315
2 2
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Fig. 1 Display of the prior-posterior distribution pairs for ¢y ;, ¢a, M and X, in the FM model
applied to the mallard data. In order to compute 7, the shaded area of overlap has to be calculated
(Equation 1). The priors for all parameters were chosen as U(0, 1) distributions. Note that scales

in panels may differ

leads to the same conclusion with all 7 values greater than or close to 0.35, except
for ¢, and \, and the young reporting rate A which was also found to be identifiable
using the 35% threshold. This is in agreement with the results obtained by Catchpole

et al. (2001), Table 5(a).

3.2 Fitting the Parameter-Redundant Sub-model

Tt is of interest here to fit the parameter-redundant sub-model, which arises when
there is just a single survival probability, ¢1, for birds in their first year of life.
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Table 2 7 values expressed as percentages for the FM model fitted to the mallard data

Parameter

T

é1.1
é1,2
®1.3
14
15
d16
17
1,8
b1.9
ba

A

Aa

40.2
41.5
34.6
40.1
41.7
347
41.5
43.4
45.3
10.7
30.8
13.4

—_—

The resulting graph showing the overlaps between priors and posteriors is shown in

Fig. 2. It appears from this graph that the onl

y parameter that is not weakly identifi-

able is @,. This result is in agreement with the classical methodology of Catchpole
et al. (2001), which formally identifies the three estimable parameters in this case

as ¢, and the two parameter combinations 1N
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overlaps are, 75, = 75.93, 74, = 10.78, 1), = 60.66, 73, = 51.33. The difference
between Figs. 1 and 2 is one of degree, with the weakly-identified parameters of
Fig. 2 exhibiting more overlap with the prior than in the case of Fig. 1.

4 Mark-Recapture: Application to the Cormack-Jolly-Seber
Model

We consider now the fully time-dependent capture-mark-recapture Cormack-Jolly-
Seber (CJS) model originally developed by Cormack (1964), Jolly (1965) and Seber
(1965), for which all parameters are time dependent. We define ¢; as the probabil-
ity that an animal survives to time #; given that it is alive at time #;, and p; the
probability of being recaptured at time ¢;. Even though it is parameter-redundant,
the model can be useful for analyzing capture-mark-recapture data. We fitted the
CJS model to the dipper data set which consists of 7 capture occasions (Table 3).
The data are the result of a recapture study of both male and female birds ringed
as adults in eastern France, in 1981-1986. In this application, the last survival (¢)
and detection (p7) probabilities are known to be confounded while all the other
parameters are estimable.

Displays of the prior-posterior distribution pairs for survival and detection prob-
abilities are given in Fig. 3.

The overlap percentages are given in Table 4 and correspond to the shaded areas
in Fig. 3.

From examining Fig. 3, it appears that almost all CJS model parameters are
well identified given the small overlap between the prior and posterior distributions.
However, as expected, the last survival and detection probabilities are the exception,
their posterior distributions being relatively flat and therefore providing more cov-
erage of the uniform priors. In addition, it should be noted that the first survival and
the first detection probabilities are also clearly weakly identifiable, due to the fact
that very few individuals were marked at the first sampling occasion (approximately
7% of the full data set). The visual diagnostic of Fig. 3 is confirmed by looking at the
numerical values of = in Table 4. In addition, parameter p; seems to be marginally

' weakly identifiable (7, = 35.9).

Table 3 Recapture data for European dippers Cinclus cinclus (data taken from Lebreton
et al. 1992) ‘

Year of Year of recapture (19814) Number never

release | 2 3 4 5 6 recaptured
1981 1m 2 0 0 0 0 9

1982 24 1 0 0 0 35

1983 34 2 0 0 42

1984 45 1 2 32

1985 51 0 37

1986 52 46
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Table 5 Sensitivity analysis for the CJS model applied to the dipper data. In rows we show the
parameter for which the prior is changed in turn (froma U(0, ) toa Beta(1,9)). In columns we give
the posterior means for all the parameters. The last column gives the Euclidean distance between
each row and the case where all priors are U(0, 1)

¢ ¢ b3 ds b5 s pr  p3 Pa_Ps Pe  p1 eucl dist.
¢1 047 046 048 0.63 0.60 0.72 0.75 0.87 088 0.87 090 074 0.27
¢, 0.74 039 049 0.62 061 0.73 065 0.89 0.88 0.88 0.90 0.73 0.07
¢3 0.72 046 043 0.63 0.60 0.73 0.67 0.86 0.89 0.88 091 0.74 0.05
¢s 072 045 048 056 0.61 0.73 0.67 0.87 0.87 0.89 090 0.74 0.07
¢s 072 045 048 063 0.55 0.74 0.66 0.87 088 0.87 092 0.74 0.06
¢¢ 072 045 048 063 061 053 0.67 087 0.88 0.88 090 0.91 0.28
p, 0.83 043 048 063 0.60 0.73 042 087 088 0.88 091 074 0.26
ps 072 055 045 063 0.60 0.73 0.67 0.60 0.88 0.87 090 0.74 0.30
ps 072 045 053 060 0.61 0.74 0.67 087 067 087 090 073 0.21
ps 073 045 048 0.69 0.57 074 0.66 087 0.88 0.71 0.91 0.73 0.18
ps 072 045 048 063 0.67 071 0.67 0.87 088 0.87 073 0.71 0.19
p7 072 045 048 063 061 091 0.67 0.87 088 087 089 0.53 0.27

parameters except for one, which is given a Beta(l,9) prior, and we then change,
in turn, which parameter has the different prior. As we can see from the results
displayed in Table 5, the conclusions are not straightforward.

However it appears that there is little sensitivity of parameters to the prior,
except for parameters ¢1, p2, P6, P3 and p;. This is in line with the findings
from using the overlap measure 7, but there is a difference in order. As with the
overlap measure, there is an issue of calibration here. Carrying out the sensitiv-
ity analysis by changing the prior for one parameter at a time is time consuming
since we need to run the MCMC chains as many times as the number of param-
eters (note also that to check for convergence of the MCMC, we always run two
chains in parallel). Thus this approach could soon become intractable with more
complex models, particularly as one would typically use several alternative beta
distributions.

Because of the relative complexity of a detailed sensitivity analysis, we now con-
sider a simpler alternative approach, of examining correlations between parameters,
obtained from the MCMC output in the usual way.

6 Correlations Between Estimates

6.1 The Dipper Data

The correlation matrix of the parameters for the CJS model applied to the dipper
data is given in Table 6. ,

We have high negative correlation between ¢ and p7 (—0.89) as expected, mod-
erate negative correlation between ¢; and p; (—0.50), and all remaining pairs of
parameters give correlations in the range (—0.32, 0.16). We note that the value
of —0.32 relates to paramgter ps, as well as to parameter ¢». Thus in this example
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Table 6 Correlation matrix for the parameters of the CJS model applied to the dipper data

1 [ &3 (2 &5 &6 123 D3 D4 Ds D6 D1
[} 1.00 -0.15 0.02 —0.03 —0.03 0.00 —0.50 0.02 0.01 —-0.02 —-0.05 0.00
¢, —0.15 1.00 —0.08 0.00 0.00 —0.03 0.09 —0.32 0.05 —0.03 0.00 0.05
¢3 002 —008 1.00 -0.06 0.02 0.03 —0.03 0.16 —-0.18 0.03 0.01 —0.04
¢4 —0.03 0.00 —0.06 1.00 —0.09 —0.02 0.03 —0.01 0.15 —-0.32 0.00 —0.02
¢s —0.03 0.00 0.02 —0.09 1.00 0.01 0.02 —0.02 0.01 0.15 —0.30 —0.06
¢s 000 —0.03 0.03 —0.02 001 1.00 004 005 —-0.02 -0.07 0.02 —0.89
p2 —0.50 009 —0.03 0.03 002 004 100 001 —0.02 0.04 —0.02 —0.03
ps 0.02 -032 0.16 —0.01 —0.02 0.05 0.01 1.00 —-0.04 —0.01 0.02 —0.06
ps 001 005 —-0.18 0.15 001 —0.02 —0.02 —0.04 1.00 —0.02 —-0.04 0.01
ps —0.02 —0.03 0.03 -0.32 0.15 —0.07 0.04 —0.01 —0.02 1.00 —0.04 0.07
ps —0.05 000 0.01 0.00 —030 0.02 —0.02 0.02 —0.04 -0.04 1.00 0.03
pr 0.00 0.05 —0.04 —0.02 —0.06 —0.89 —0.03 —0.06 0.01 007 0.03 1.00

considering the correlation structure between estimates has proved to be useful, and

is relatively easy to implement.

6.2 The Mallard Data and the FM Model

The correlation matrix of the parameters for the FM model applied to the Mallard

data is given in Table 7.

In this case the correlation matrix is not so easy to interpret. As expected, there
are generally low correlations between ¢, and all of the other parameters, but that
is not true of parameters \; and \,, which is therefore out of line with the findings

of Section 3.1.

6.3 The Mallard Data and the Parameter-Redundant Sub-model

The correlation matrix of the parameters for the FM submodel applied to the mallard

data is given in Table 8.

Table 7 Correlation matrix for the parameters of the FM model applied to the mallard data

®a b1 P12

?1,3

1.4

P15

P16

17

P18

91,9

Ap

Aa

o 1.00 —-0.06 —0.07 —0.05 —0.04 —0.03 —0.02

¢1,1 —0.06 1.00 0.85
$12 —0.07 085 1.00
¢13 —0.05 087 0.82
914 —0.04 0.88 087
d1s —0.03 0.88 0.6
016 —0.02 0.87 084
¢17 000 088 086
¢13 —0.01 086 0.84
$1o —0.03 077 0.73
A —0.02 0.86 .0.89

0.87
0.82
1.00
0.88
0.88
0.87
0.88
0.86
0.77
0.85

0.88
0.87
0.88
1.00
0.90
0.88
0.89
0.88
0.78
0.91

Aa 0.22 —0.89 —0.83 —0.90 —0.87

0.88
0.86
0.88
0.90
1.00
0.88
0.90
0.88
0.78
0.88

0.87
0.84
0.87
0.88
0.88
1.00
0.88
0.86
0.77
0.88

0.00 —0.01 —0.03

0.88
0.86
0.88
0.89
0.90
0.88
1.00
0.88
0.77
0.90

0.86
0.84
0.86
0.88
0.88
0.86
0.88
1.00
0.76
0.87

0.77
0.73
0.77
0.78
0.78
0.77
0.77
0.76
1.00
0.77

-0.02

0.86
0.89
0.85
0.91
0.88
0.88
0.90
0.87
0.77
1.00

—0.89 -0.87 —0.87 —0.85 —0.78 —0.81

0.22
—0.89
—0.83
—-0.90
-0.87
-0.89
—0.87
—0.87
—-0.85
—0.78
—0.81

1.00
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ed to the dipper data

Ps Ps P71
—0.02 —-0.05 0.00
-0.03 0.00 0.05
0.03 0.01 —0.04
—-0.32 0.00 —0.02
0.15 -0.30 —0.06
-0.07 0.02 —0.89
0.04 —0.02 —-0.03
-0.01 0.02 —0.06
—0.02 —0.04 0.01
1.00 —-0.04 0.07
—-0.04 100 0.03
0.07 0.03 1.00

ved to be useful, and

plied to the Mallard

. As expected, there
parameters, but that
ne with the findings

nt Sub-model

plied to the mallard

 to the mallard data

dro M Aa

—0.03 —-0.02 0.22
0.77 0.86 —0.89
0.73  0.89 —0.83
0.77 0.85 -0.90
0.78 0.91 —0.87
0.78 0.88 —0.89
0.77 0.88 —0.87
0.77 0.90 —0.87
0.76 0.87 —0.85
1.00 0.77 —0.78
0.77 1.00 -0.81

-0.78 —0.81 1.00
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Table 8 Correlation matrix for the parameters of the FM submodel applied to the mallard data

¢a ¢1 A Ag
O 1.00 0.00 0.01 0.04
lod) 0.00 1.00 0.86 —0.86
A 0.01 0.86 1.00 —0.59
Aa 0.04 —0.86 —0.59 1.00

We can see that the only parameter from the original parameter set that is
estimable, ¢,, is essentially uncorrelated with the other estimates, however other
conclusions are elusive, and this is true also if one considers the results of a principal
component analysis of the correlation matrix.

7 Discussion

Experience with a range of different models and data sets in the general mur
area consistently suggests that, as proposed by Garrett and Zeger (2000), the
prior/posterior overlap threshold of 7 = 35% works well as a guideline for diag-
nosing weak identifiability in models for the annual survival of wild animals, when
the approach is confined to the case of uniform prior distributions. It has been
shown by Gimenez et al. (2006) that if other priors are used then it is difficult to
calibrate 7.

A difference between using a classical approach to parameter redundancy based
on symbolic algebra and estimating the prior/posterior overlap, as in this paper, is
that the latter approach takes account of the effect of both the data and the model.
In practice, if possible it is important to understand both the redundancy structure
of individual models. as well as the influence of data. This has been seen in the
analysis of Section 3:.the estimates of reporting probabilities for the Mallard data
are quite different, but in contrast the estimates of first-year survival are not. What
this means is that the fitted FM model for the mallard data is essentially similar to
the parameter-redundant sub-model with parameters (A1, As, @1, @a).

While in practice it is important to know the parameter-redundancy status of a
model, that is not always possible (Jiang et al. 2007; Pradel et al. 2008; Schaub
et al. 2004). As we have seen, weak identifiability may be due to the model and/or
the data, and the cause of weak identifiability can be investigated once a model
is fitted, by fitting the model again to a larger data set simulated from the fitted
model. If that were done for the three examples of this paper, then nothing would
change for the parameter-redundant sub-model of the FM model. No amount of
additional data can change the fact that of the original four parameters, it is only
$. that can be estimated precisely. For the FM model, increased precision for the
estimates of first-year survival should improve overall performance, as in this case
the model is not parameter redundant. For the CJS model, analysis of the dipper data
has produced estimates of low precision either because of parameter redundancy or
because of lack of data. Here increasing cohort sizes will improve the precision of -
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parameters such as ¢, but the basic
of parameters ¢ and p7 will remain.

We believe that the use of a 35% overlap threshold for 7, combined with uniform
priors, is an important guide for interpreting the results of Bayesian analyses of mrr
data, and we recommend its use as a simple, general guideline in the area. Of course,
it is only a guideline, and needs to be interpreted sensibly.

Because the correlation matrix between parameters is easily obtained from the
MCMC output, then we recommend that it is also examined. As any Bayesian anal-
ysis will involve some sensitivity analysis, then the results of such an analysis might
also be of value. We note finally that when uniform priors are used then overlap with
the posterior may be related to the variance of the corresponding parameter, though
this will also depend on features such as skew (see for example the results of Fig. 2).

A crude alternative to the measure of overlap considered in this paper is simply to
use (and calibrate) the posterior inter-quartile range, which provides a measure of
spread that is less affected by skew.

The R and WinBUGS programs used in this paper are available on request from
the first author.
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