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a b s t r a c t

State-space models have recently been proposed as a convenient and flexible framework for

specifying stochastic models for the dynamics of wild animal populations. Here we focus on

the modelling of data on marked individuals which is frequently used in order to estimate

demographic parameters while accounting for imperfect detectability. We show how usual

models to deal with capture–recapture and ring-recovery data can be fruitfully written as

state-space models. An illustration is given using real data and a Bayesian approach using

MCMC methods is implemented to estimate the parameters. Eventually, we discuss future

developments that may be facilitated by the SSM formulation.

© 2007 Elsevier B.V. All rights reserved.
ormack–Jolly–Seber

CMC methods

ultistate models

ing-recovery models

urvival estimation

marriage and failure respectively), models for estimating wild
inBUGS

. Introduction

he estimation of animal survival is essential in population

iology to investigate population dynamics, with important
pplications in the understanding of ecological, evolutionary,
onservation and management issues for wild populations

∗ Corresponding author at: Centre d’Ecologie Fonctionnelle et Evolutive/
E-mail address: olivier.gimenez@cefe.cnrs.fr (O. Gimenez).

304-3800/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
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(Pollock, 1991; Williams et al., 2002). While the time to event
is known in medical, social or engineering sciences (death,
CNRS, UMR 5175, 1919 Route de Mende, 34293 Montpellier, France.

animal survival must incorporate nuisance parameters to
account for incomplete detectability in monitoring individuals
(Schwarz and Seber, 1999). Typically, individuals are captured,
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marked and can be resighted or recaptured (encountered
thereafter) to construct encounter histories which consist of
sequences of 1’s and 0’s according to whether a detection
occurs or not. The likelihood for such data arises from prod-
ucts of multinomial distributions whose cell probabilities are
complex functions of survival probabilities – parameters of
primary interest – and encounter probabilities – nuisance
parameters (Cormack, 1964; Jolly, 1965; Seber, 1965– CJS there-
after).

In this note, we show how the population process can
be fruitfully disentangled, by distinguishing the underlying
demographic process, i.e., the survival (as well as transitions
between sites/states if needed), from its observation, i.e., the
detectability. This leads us to consider a natural formula-
tion for capture–recapture models using state-space models
(SSMs). Our contribution is in line with a recent paper by
Buckland et al. (2004) who have proposed to adopt SSMs as
a convenient and flexible framework for specifying stochastic
models for the dynamics of wild animal populations.

Thus far, SSMs have been mainly used for time series of ani-
mal counts (De Valpine, 2004; Millar and Meyer, 2000) or animal
locations (Anderson-Sprecher and Ledolter, 1991) to allow true
but unobservable states (the population size or trajectory) to
be inferred from observed but noisy data (see Clark et al., 2005;
Wang, 2007 for reviews). The novelty of our approach lies in
the use of SSMs to fit capture–recapture models to encounter
histories.

In Section 2, we discuss how to express the CJS model under
the form of a SSM. The implementation details are provided,
and real data are presented to compare parameter estimates
as obtained using the standard product-multinomial and the
SSM approaches. In Section 3, the flexibility of the state-
space modeling approach is demonstrated by considering two
widely used alternative schemes for collecting data on marked
animals. Finally, Section 4 discusses important developments
of capture–recapture models facilitated by the SSM formula-
tion. We emphasize that this general framework has a great
potential in population ecology modelling.

2. State-space modelling of
capture–recapture data

We focus here on the CJS model for estimating animal survival
based on capture–recapture data, as this model is widely used
in the ecological and evolutionary literature (e.g., Lebreton et
al., 1992).

2.1. Likelihood

We first define the observations and then the states of the sys-
tem. We assume that n individuals are involved in the study
with T encounter occasions. Let Xi,t be the binary random vari-
able taking values 1 if individual i is alive at time t and 0 if it
is dead at time t. Let Yi,t be the binary random variable taking
values 1 if individual i is encountered at time t and 0 otherwise.

Note that we consider the encounter event as being physically
captured or barely observed. The parameters involved in the
likelihood are �i,t, the probability that an animal i survives to
time t + 1 given that it is alive at time t (t = 1, . . . , T − 1), and pi,t
2 0 6 ( 2 0 0 7 ) 431–438

the probability of detecting individual i at time t (t = 2, . . . , T).
Let finally ei be the occasion where individual i is encountered
for the first time. A general state-space formulation of the CJS
model is therefore given by

Yi,t|Xi,t ∼ Bernoulli (Xi,tpi,t), (1)

Xi,t+1|Xi,t ∼ Bernoulli (Xi,t�i,t), (2)

for t ≥ ei, with pi,ei
= 1 and where Eqs. (1) and (2) are the obser-

vation and the state equations respectively. This formulation
naturally separates the nuisance parameters (the encounter
probabilities) from the parameters of actual interest, i.e., the
survival probabilities, the latter being involved exclusively in
the state Eq. (2). Such a clear distinction between a demo-
graphic process and its observation makes the description of
a biological dynamic system much simpler and allows com-
plex models to be fitted (Pradel, 2005; Clark et al., 2005). We
will refer to this formulation as the individual state-space CJS
model (individual SSM CJS hereafter). The rationale behind the
above formulation is as follows. We give the full details for the
observation Eq. (1) only, as a similar reasoning easily leads to
Eq. (2). If individual i is alive at time t, then it has probability pi,t

of being encountered and probability 1 − pi,t otherwise, which
translates into Yi,t is distributed as Bernoulli (pi,t) given Xi,t = 1.
Now if individual i is dead at time t, then it cannot be encoun-
tered, which translates into Yi,t is distributed as Bernoulli (0)
given Xi,t = 0. Putting together those two pieces of reasoning,
the distribution of the observation Yi,t conditional on the state
Xi,t is given by Eq. (1).

Statistical inference then requires the likelihood of the
state-space model specified above. Assuming independence
of individuals, the likelihood is given by the product of all
individual likelihood components. The likelihood component
for individual i is the probability of the vector of observations
YT

i = (Yi,ei
, . . . , Yi,T) which gathers the information set up to

time T for this particular individual. Conditional on the first
detection, the likelihood component corresponding to indi-
vidual i is therefore given by (e.g., Harvey, 1989)

∫
Xi,ei

· · ·
∫

Xi,T

[Xi,ei
]

⎧⎨
⎩

T∏
t=ei+1

[Yi,t|Xi,t][Xi,t|Xi,t−1]

⎫⎬
⎭dXi,ei

. . . dXi,T

(3)

where [X] denotes the distribution of X and Xi,ei
the initial state

of individual i which is assumed to be alive. Because we deal
with binary random vectors, we used the counting measure
instead of the Lebesgue measure.

In its original formulation, the CJS makes important
assumptions regarding individuals. First, all individuals share
the same parameters, which means that the survival and
detection probabilities depend on the time index only. In
mathematical notation, we have �i,t = �t and pi,t = pt for all i =
1, . . . , n, so Eqs. (1) and (2) become X |X ∼ Bernoulli(X � )
i,t+1 i,t i,t t

and Yi,t|Xi,t ∼ Bernoulli(Xi,tpt) respectively. Second, the CJS
model also assumes independence between individuals. By
using simple relationships between Bernoulli and Binomial
distributions, one can finally fruitfully formulates the original
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JS model under the following state-space model:

t|Xt ∼ Bin(Xt − ut, pt) (4)

t+1|Xt ∼ Bin(Xt, �t) + ut+1 (5)

here Xt is the number of survivors from time t plus the num-
er of newly marked individuals at time t, ut, and Yt is the total
umber of previously marked individuals encountered at time

. We will refer to this formulation as the population state-
pace CJS model (population SSM CJS hereafter). Interestingly,
pecifying the system under a state-space formulation now
equires much less equations than the individual SSM CJS

odel, which may avoid the computational burden. Never-
heless, while the individual SSM CJS involves parameters for
very single individual and sampling occasion, the population
SM CJS model makes the strong assumptions that all individ-
als behave the same as well as independently, which may be
f little relevance from the biological point of view. To cope
ith this issue, in-between modeling can be achieved by con-

idering age effects or groups classes in the population SSM
odel (Lebreton et al., 1992). Finally, covariates can be incor-

orated in order to assess the effect of environment such as
limate change, most conveniently by writing the relationship
etween the target probabilities and the predictors on the logit
cale (Pollock, 2002).

.2. Implementation

itting SSMs is complicated due to the high-dimensional inte-
ral involved in the individual likelihood Eq. (3). To circumvent
his issue, several techniques have been proposed includ-
ng Kalman filtering, Monte-Carlo particle filtering (such as
equential importance sampling) and MCMC (see Clark et al.,

005; Wang, 2007 for reviews). Our objective here is not to dis-
uss these different methods. For our purpose, we adopt the
CMC technique which is now widely used in biology (Ellison,

004; Clark, 2005), in particular for estimating animal survival

Table 1 – Estimated survival and detection probabilities for the
methods, the state-space model (SSM) using a Monte Carlo Ma
model (PMM) using a MCMC method and the PMM using a max

Parameter SSM using MCMC posterior
median/mode (S.D.)

PM

�1 0.721/0.722 (0.132)
�2 0.448/0.456 (0.071)
�3 0.480/0.493 (0.060)
�4 0.628/0.624 (0.061)
�5 0.602/0.601 (0.057)
�6 0.713/0.640 (0.142)
p2 0.671/0.658 (0.134)
p3 0.883/0.918 (0.083)
p4 0.888/0.914 (0.063)
p5 0.882/0.885 (0.057)
p6 0.913/0.920 (0.052)
p7 0.735/0.724 (0.142)

The two first methods were implemented using program WinBUGS (Spieg
was used to implement the last one.
a Non-identifiability detected.
6 ( 2 0 0 7 ) 431–438 433

(Schwarz and Seber, 1999; Brooks et al., 2000). Besides, this is
to our knowledge the only methodology which comes with
an efficient and flexible program to implement it, which, in
our case, will allow biologists to easily and rapidly adopt our
approach.

In addition to the difficulty of estimating model parame-
ters, the use of SSMs raises several important issues regarding
identifiability, model selection and goodness-of-fit (Buckland
et al., 2004) that will not be discussed here. Noteworthy,
Bayesian modelling using MCMC methods offer possible solu-
tions reviewed in Gimenez et al. (submitted).

2.3. Illustration

We consider capture–recapture data on the European dipper
(Cinclus cinclus) that were collected between 1981 and 1987
(Lebreton et al., 1992). The data consist of marking and recap-
tures of 294 birds ringed as adults in eastern France. We
applied standard maximum-likelihood estimation (Lebreton
et al., 1992) and MCMC techniques (Brooks et al., 2000) using
the product-multinomial likelihood and the state-space likeli-
hood of Eq. (3) in combination with Eqs. (1) and (2). We ran two
overdispersed parallel MCMC chains to check whether conver-
gence was reached (Gelman, 1996). We used 10,000 iterations
with 5000 burned iterations for posterior summarization. We
used uniform flat priors for both survival and detection prob-
abilities. The simulations were performed using WinBUGS
(Spiegelhalter et al., 2003). The R (Ihaka and Gentleman, 1996)
package R2WinBUGS (Sturtz et al., 2005) was used to call Win-
BUGS and export results in R. This was especially helpful
when converting the raw encounter histories into the appro-
priate format, generating initial values and calculate posterior
modes. The programs are available in Appendix A. Posterior
summaries for encounter and survival probabilities are given

in Table 1, along with their posterior probability distributions
that are displayed in Fig. 1.

Survival estimates were uniformally similar whatever the
method used (Table 1). In particular, there is a clear decrease

Dipper data using the CJS model and three different
rkov Chain (MCMC) method, the product-multinomial
imum-likelihood (ML) method

M using MCMC posterior
median/mode (S.D.)

PMM using ML
MLE (S.E.)

0.723/0.693 (0.132) 0.718 (0.156)
0.448/0.460 (0.071) 0.435 (0.069)
0.480/0.476 (0.061) 0.478 (0.060)
0.627/0.616 (0.060) 0.626 (0.059)
0.602/0.607 (0.057) 0.599 (0.056)
0.720/0.628 (0.143) – (–)a

0.670/0.691 (0.134) 0.696 (0.166)
0.883/0.904 (0.083) 0.923 (0.073)
0.889/0.912 (0.063) 0.913 (0.058)
0.883/0.904 (0.057) 0.901 (0.054)
0.912/0.935 (0.051) 0.932 (0.046)
0.727/0.648 (0.143) – (–)a

elhalter et al., 2003), while program M-SURGE (Choquet et al., 2004)
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prob
Fig. 1 – Posterior distributions for the survival and detection
as estimated by the state-space model and MCMC methods.

in survival 1982–1983 and 1983–1984, corresponding to a major
flood during the breeding season in 1983 (Lebreton et al., 1992).

In contrast, posterior medians of detection probabilities
using the CJS SSM approach are quite different from the clas-
sical maximum-likelihood estimates, but more similar to the
posterior medians obtained with the product-multinomial
likelihood approach (Table 1). These discrepancies are no
longer present when posterior modes are examined, as
expected (recall that we use non-informative uniform distri-
butions as priors for all parameters).

The last survival probability as well as the last detection
probability are estimated with high variability (Table 1 and
Fig. 1). The fact that these two parameters cannot be sep-
arately estimated is not surprising since the CJS model is
known to be parameter-redundant (Catchpole and Morgan,
1997). Also, the first survival probability and the first detec-
tion probability are poorly estimated, due to the fact that very
few individuals were marked at the first sampling occasion
(approximately 7% of the full data set).

In terms of time computation, the MCMC approach using
a product-multinomial likelihood took 30 s to run and a few
second for the classical approach, while the MCMC approach
using the SSM likelihood took 4 min (512Mo RAM, 2.6 GHz CPU).

3. Further state-space modelling
3.1. Multistate capture–recapture models

Multistate capture–recapture models (Arnason, 1973; Schwarz
et al., 1993; AS hereafter) are a natural generalization of the CJS
abilities using the CJS model applied to the Dipper data set

model in that individuals can move between states, according
to probabilities of transition between those states. States can
be either geographical sites or states of categorical variables
like reproductive status or size class (Lebreton and Pradel,
2002). We provide here a state-space modelling formulation of
the AS model (Dupuis, 1995; Newman, 1998; Clark et al., 2005).
Without loss of generality, we consider two states. Let Xi,t be
the random state vector taking values (1, 0, 0), (0, 1, 0) and (0, 0,
1) if, at time t, individual i is alive in state 1, 2 or dead respec-
tively. Let Yi,t be the random observation vector taking values
(1, 0, 0), (0, 1, 0) and (0, 0, 1) if, at time t, individual i is encoun-
tered in state 1, 2 or not encountered. Parameters involved in
the modelling include �rs

i,t
, the probability that an animal i sur-

vives to time t + 1 given that it is alive at time t (t = 1, . . . , T − 1)
and makes the transition between state r and state s over
the same interval (r, s = 1, 2), as well as pr

i,t
the probability of

detecting individual i at time t in state r (t = 2, . . . , T, r = 1, 2). A
state-space formulation for the multistate AS model is given
by:

Yi,t|Xi,t ∼ multinomial

⎛
⎝1, Xi,t

⎡
⎣ p1

i,t
0 1 − p1

i,t

0 p2
i,t

1 − p2
i,t

0 0 1

⎤
⎦

⎞
⎠ (6)

⎛ ⎡ ⎤⎞

Xi,t+1|Xi,t ∼ multinomial ⎝1, Xi,t

⎣ �11
i,t

�12
i,t

1 − �11
i,t

− �12
i,t

�21
i,t

�22
i,t

1 − �21
i,t

− �22
i,t

0 0 1

⎦⎠
(7)
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here Eqs. (6) and (7) are the observation and the state
quations respectively. This formulation has similarities with
hat of Pradel (2005) who used hidden-Markov models to
xtend multistate models to cope with uncertainty in state
ssignment. Again, it should be noted that the state-space
ormulation allows the demographic parameters to be distin-
uished from the nuisance parameters. A similar reasoning
o that adopted for the CJS model leads to Eqs. (6) and (7). As
xpected, Eqs. (6) and (7) reduce to Eqs. (1) and (2) if one con-
iders a single state. Making similar assumptions as in the CJS
odel leads to the population AS SSM.

.2. Ring-recovery models

he capture–recapture models presented above deals with
pparent survival, which turns out to be true survival if
migration is negligeable. When marks of individuals (or
ndividuals themselves) are actually recovered, true survival
robabilities can be estimated using ring-recovery models

Brownie et al., 1985; RR models hereafter). Let Xi,t be the binary
andom variable taking values 1 if individual i is alive at time t
nd 0 if it is dead at time t. Let Yi,t be the binary random vari-
ble taking values 1 if mark of individual i is recovered at time t
nd 0 otherwise. The parameters involved in the likelihood are

i,t, the probability that an animal i survives to time t + 1 given
hat it is alive at time t (t = 1, . . . , T − 1), and �i,t the probability
f recovering the mark of individual i at time t (t = 2, . . . , T). A
eneral state-space formulation of the RR model is therefore
iven by:

i,t|Xi,t, Xi,t−1 ∼ Bernoulli ((Xi,t−1 − Xi,t)�i,t) (8)

i,t+1|Xi,t ∼ Bernoulli (Xi,t�i,t) (9)

here Eqs. (8) and (9) are the observation and the state equa-
ions respectively. While the state Eq. (9) is the same as that in
he individual SSM CJS, the observation Eq. (8) deserves further
xplanation. If individual i, alive at time t − 1, does not survive
o time t, then its mark has probability �i,t of being recovered
nd probability 1 − �i,t otherwise, which translates into Yi,t is
istributed as Bernoulli (�i,t) given Xi,t−1 = 1 and Xi,t = 0, i.e.,

i,t−1 − Xi,t = 1. Now if individual i is in a given state (dead or
live) at time t − 1 and remains in this state till time t, then
ts mark cannot be recovered, which translates into Yi,t is dis-
ributed as Bernoulli (0) given Xi,t−1 = 0 and Xi,t = 0 or Xi,t−1 = 1

nd Xi,t = 1, i.e., Xi,t−1 − Xi,t = 0. The distribution of the obser-
ation Yi,t conditional on the combination of states Xi,t−1 − Xi,t

s thus given by Eq. (8). Similar comments to that of previ-
us sections can be made here as well. Finally, we note that
6 ( 2 0 0 7 ) 431–438 435

because the probability distribution of the current observation
does not only depend on the current state variable, the model
defined by Eqs. (8) and (9) does not exactly matches the defini-
tion of a state-space model but can be rewritten as such (see
Appendix B).

4. Discussion

We have shown that, by separating the demographic process
from its observation, CR models for estimating survival can
be expressed as SSMs. In particular, the SSM formulation of
the CJS model competes well with the standard method when
applied to a real data set. Bearing this in mind, we see at least
two further promising developments to our approach.

First, by scaling down from the population to the individ-
ual level while modelling the survival probabilities, individual
random effects can readily be incorporated to cope with het-
erogeneity in the detection probability (Huggins, 2001) and
deal with a frailty in the survival probability (Vaupel and
Yashin, 1985). Second, the combination of various sources of
information which has recently received a growing interest
(e.g., recovery and recapture data, Catchpole et al., 1998; recov-
ery and census data, Besbeas et al., 2002, 2003) can now be
operated/conducted in a unique SSM framework and hence
benefits from the corpus of related methods. Of particular
importance, we are currently investigating the robust detec-
tion of density-dependence by accounting for error in the
measurement of population size using the combination of
census data and data on marked individuals.

Because most often, data collected in population dynamics
studies give only a noisy output of the demographic process
under investigation, the SSM framework provides a flexible
and integrated framework for fitting a wide range of mod-
els which, with widespread adoption, has the potential to
advance significantly ecological statistics (Buckland et al.,
2004; Thomas et al., 2005).
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Appendix A. WinBUGS code for fitting the CJS mod
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ppendix B

et Zi,t = [Xi,t−1, Xi,t] be a bivariate random vector where its two
omponents are denoted Z1

i,t
and Z2

i,t
. Eq. (8) becomes

i,t|Zi,t ∼ Bernoulli
(

(Z1
i,t − Z2

i,t)�i,t

)
(10)

nd Eq. (9) becomes

i,t+1|Zi,t =
{

(Z1
i,t+1|Zi,t) = Z2

i,t

Z2
i,t+1|Zi,t ∼ Bernoulli(Z2

i,t
�i,t).

(11)

he system defined by Eqs. (10) and (11) is a state-space
odel and it is equivalent to the model defined by Eqs. (8)

nd (9).
Note that an alternative state-space formulation can be

dopted using a multistate formulation of the RR model
Lebreton et al., 1999) and Section 3.1.
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