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Abstract. Assessing natural selection on a phenotypic trait in wild populations is of primary importance for evolu-
tionary ecologists. To cope with the imperfect detection of individuals inherent to monitoring in the wild, we develop
a nonparametric method for evaluating the form of natural selection on a quantitative trait using mark-recapture data.
Our approach uses penalized splines to achieve flexibility in exploring the form of natural selection by avoiding the
need to specify an a priori parametric function. If needed, it can help in suggesting a new parametric model. We
employ Markov chain Monte Carlo sampling in a Bayesian framework to estimate model parameters. We illustrate
our approach using data for a wild population of sociable weavers (Philetairus socius) to investigate survival in relation
to body mass. In agreement with previous parametric analyses, we found that lighter individuals showed a reduction
in survival. However, the survival function was not symmetric, indicating that body mass might not be under stabilizing
selection as suggested previously.
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Evolutionary ecologists are often interested in describing
and quantifying the action of selection on phenotypic traits
in a natural population (Endler 1986; Hoekstra et al. 2001;
Kinksolver et al. 2001). For this purpose, the multiple re-
gression method of Lande and Arnold (1983) is a popular
and powerful method to measure coefficients of directional
and quadratic selection intensity. There are several well-
known difficulties with this method. Perhaps the most im-
portant one is the problem of environmental covariances
(Mauricio and Mojonnier 1997; Kruuk et al. 2003). However,
there are other caveats when interpreting coefficients of di-
rectional and quadratic selection intensity. In particular, in-
ferring the form of selection (directional, stabilizing, or dis-
ruptive) from these coefficients may be difficult if the shape
of the underlying fitness surface is not quadratic. As a con-
sequence, estimating the shape of the fitness surface is an
important step in describing selection pressure on phenotypic
traits (Schluter 1988; Schluter and Nychka 1994), and it is
useful in understanding how selection acts on combinations
of traits and how traits may be modified directly or indirectly
through their correlations (Lande and Arnold 1983).

This surface, or fitness function, relates survival or repro-
ductive success of individuals to a set of phenotypic traits

(Lande 1979; Lande and Arnold 1983). The main difficulty
in estimating this surface is that it may have any shape,
including several peaks, valleys, and ridges. To overcome
this problem, it is desirable to use a statistical method with
few a priori constraints on the possible shapes. For this pur-
pose, Schluter (1988) and Schluter and Nychka (1994) in-
troduced the use of cubic splines, a flexible and general non-
parametric method. In addition, fitness traits such as survival
are often difficult to measure directly in the field because
unobserved individuals can be either dead or alive but un-
detected (Clobert 1995). Kingsolver and Smith (1995) pro-
posed using mark-recapture (hereafter MR) statistical meth-
ods to estimate fitness functions that relate survival to quan-
titative traits. Note that, following Schluter and Nychka
(1994), we consider survival a surrogate of fitness, despite
it being only a component of true fitness, and thus we use
the general term ‘‘fitness’’ throughout (see also Cooch et al.
2002).

There is an elaborate set of methods to describe detection
and survival probabilities from MR data (Lebreton et al.
1992; Williams et al. 2002). However, these methods are
generally restricted to linear or quadratic fitness functions,
and they have the same potential limitations of the original
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Lande and Arnold (1983) method. Although this approach
has proved useful in several cases (Kingsolver 1995; Srygley
and Kingsolver 2000; Lorenzon et al. 2001; Altwegg and
Reyer 2002; Conroy et al. 2002; Covas et al. 2002; Grégoire
et al. 2004; Blums et al. 2005), a more flexible approach
combining cubic splines with the MR methods would be valu-
able in helping to better understand the form of selection in
natural populations.

In this paper, we develop a nonparametric method for eval-
uating the form of natural selection on a quantitative trait
using MR data. We first formulate survival as a nonparametric
regression function of a trait. We use Markov chain Monte
Carlo (MCMC) sampling in a Bayesian framework to esti-
mate model parameters. We illustrate our approach using data
for a wild population of sociable weavers (Philetairus socius)
to investigate survival in relation to body mass. Finally, we
briefly discuss how this method may be adapted to take into
account breeding values instead of phenotypic values and
other individual covariates (e.g., age, sex). This method may
be useful in a variety of situations in extracting as much
information as possible from MR data.

MODEL DEVELOPMENT

A MR protocol consists of J encounter occasions at which
a total of I animals are recaptured. On each occasion, new
unmarked animals are given unique marks and then released.
Previously marked animals can also be encountered, and after
their identity is recorded, they are also released back into the
population. This experiment results in a set of animal en-
counter histories, made up of 1 and 0 values depending, re-
spectively, on whether an animal is detected or not (for re-
views, see Lebreton et al. 1992; Williams et al. 2002). The
inclusion of explicative variables in MR models was re-
viewed by Pollock (2002), who noted that a particular treat-
ment was needed for individual covariates (see Skalski et al.
1993; Hoffman and Skalski 1995). Clobert (1995) discussed
the use and potential of MR methods for evolutionary ecol-
ogy. Kingsolver and Smith (1995) applied MR methodology
to show evidence of natural selection on quantitative traits.
We first specify the survival function under a nonparametric
form and then form the likelihood for MR data. Because the
combination of these two steps results in a complex multi-
dimensional integral, an explicit formula would be intrac-
table. However, with the improving capacities of recent com-
puters, the use of computational intensive algorithms now
offers a solution for tackling such complex problems, es-
pecially in the analysis of data arising from marked animals
(for a review see Brooks et al. 2000). We thus opt for MCMC
methods (e.g., Gilks et al. 1996) for estimating model pa-
rameters, and we conduct the analysis in a Bayesian frame-
work using noninformative priors.

Nonparametric Regression of Survival Probabilities

We denote fij as the probability that an animal i survives
to time tj11 given that it is alive at time tj. We consider a
nonparametric regression model for this survival probability
of the form

logit(f ) 5 f (x ) 1 « , i 5 1, . . . , I andi j i j i j

j 5 1, . . . , J, (1)

where xij is the value of the covariate for the ith individual
at the jth sampling occasion, «ij are i.i.d N(0, ), «ij is in-2s«

dependent of xij, f is a smooth function, and logit(x) 5 log[x/
(1 2 x)]. Because the survival must lie between zero and
one, the logit link is often preferred in equation (1) (but for
a discussion see Kingsolver and Smith 1995). We used ran-
dom effects «ij to cope with the residual variation in survival
not handled by the covariate alone. Several alternatives are
available to model the nonparametric relationship between
the survival probability and the individual covariate specified
by the function f, for example, loess smoothing (Cleveland
and Devlin 1988), kernel smoothing (Silverman 1986), nat-
ural cubic splines (Schluter 1988), and multivariate adaptive
regression splines (Friedman 1991; for reviews, see Hastie
and Tibshirani 1990; Ruppert et al. 2003). In this paper, we
opted for penalized splines (P-splines) introduced by Ruppert
et al. (2003), because they can be easily implemented (Crain-
iceanu et al. 2005), allow straightforward extensions to sev-
eral covariates that may enter the model linearly or nonli-
nearly (Gimenez et al. 2006), and automatically cope with
several issues associated with the use of splines (see below).
We used the truncated polynomial basis to model the smooth
function

K
P Pf (x z h) 5 b 1 b x 1 · · · 1 b x 1 (b 2 k ) , (2)O0 1 P k k 1

k51

where P $ 1 is the degree of the P-spline, h 5
(b1,. . . ,bP,b1,. . . ,bK)T is a vector of regression coefficients
to be estimated, 5 up I(u $ 0), and k1 , k2 , . . . ,p(u)1

kK are fixed knots. The problem in using equation (2) is the
choice of the number and the position of the knots. A small
number of knots may result in a smoothing function that is
not flexible enough to capture variability in the data, whereas
a large number of knots may lead to overfitting. A trade-off
can be achieved by imposing a penalty, which attenuates the
influence of the regression coefficients, and thus yields a
smoother curve.

Technically, we first chose a fixed number of knots K 5
(J/4,35) that was large enough to ensure the desired flexibility
(Ruppert 2002; Ruppert et al. 2003). We let kk be equally
spaced sample quantiles, that is, the sample quantile of the
xij values corresponding to probabilities k/(K 1 1) (Ruppert
2002). Because the bk values are the jumps in the second
derivatives of the smooth function at the knots, a quadratic
penalty is placed on b so that with equation (2) we associate
the constraint bTb # l, where l is the smoothing parameter
(Ruppert et al. 2003). We note that equation (2) can be easily
implemented in a mixed model framework (Rupert et al.
2003), and in this context, imposing a roughness penalty is
equivalent to considering the penalized regression parameters
(the bk values) as random, whereas the unpenalized coeffi-
cients (the bp values) are treated as fixed. Considering this
structure, the degree of smoothness is data driven and con-
trolled by the smoothing parameter estimated as a by-product
as l 5 / (Ruppert et al. 2003). Once a minimum number2 2s sb «

of knots is reached, the fit given by a P-spline is nearly
independent of the knot number and location (Ruppert 2002).
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Mark-Recapture Data Likelihood

We consider the encounter history for individual i

h 5 (d ,. . . ,d ),i i1 ij11 (3)

where dij denotes whether individual i is observed (dij 5 1)
or not (dij 5 0) at time tj. Then the likelihood component
corresponding to individual i is given by

l li21 i
d 12dij ij[h z f, p] } f p (1 2 p ) x (4)P Pi i j j j i li5 65 6j5e j5li i11

(Skalski et al. 1993; Hoffman and Skalski 1995), where [X]
denotes the distribution of X, pj, j 5 2,. . . ,J 1 1, denotes
the encounter probability of being detected at time tj. We
note ei the occasion where individual i is captured for the
first time; similarly li is an index for the last occasion where
individual i is recaptured. We denote xij the probability that
animal i, alive at time ti, is not subsequently encountered.
This is calculated recursively as xij 5 1 2 fij[1 2 (1 2
pj11)xij11], with xij11 5 1. Note that we adopt the convention
that a null sequence has a product of one.

Assuming independence among individuals, the likelihood
is the product of the probabilities of all individual encounter
histories (Skalski et al. 1993; Hoffman and Skalski 1995)
given by equation (4):

I

[h z f, p] } h . (5)P i
i51

Implementation via Markov Chain Monte Carlo Methods

To estimate the model parameters, a frequentist approach
would require maximizing the likelihood, which is obtained
by integrating the distribution [hzf, p] over the random effects
«ij and bk, involving a high dimensional integral. To overcome
this difficulty, we make use of MCMC sampling (e.g., Gilks
et al. 1996) in a Bayesian framework. The Bayesian analysis
combines the likelihood (eq. 5) and prior probability distri-
butions for the parameters and uses Bayes’s theorem (Gilks
et al. 1996) to obtain the posterior distribution as the basis
for inference. The MCMC methods simulate values for the
unknown quantities of interest following a Markov chain
whose stationary distribution is the required posterior dis-
tribution. A burn-in period ensures that the Markov chain
has reached its stationary distribution. Inference is then based
on the remaining simulated values, by computing numerical
summaries such as empirical medians and confidence inter-
vals for quantities of interest.

To specify the Bayesian nonparametric model, we provide
noninformative prior distributions for all parameters. Spe-
cifically, we chose uniform distributions on [0,1] for the de-
tection probabilities, and normal distributions with mean zero
and variances 1,000,000, , and for the b, the b, and the2 2s sb «

«ij values, respectively. The priors for the hyperparameters
and were chosen as inverse-gamma with both param-2 2s sb «

eters equal to 0.001. All priors were selected as sufficiently
vague to induce little prior knowledge. Generally, if the data
are informative enough, the likelihood dominates the non-
informative priors and the posterior summaries using MCMC
samples are close to the results of a frequentist analysis.

We used software WinBUGS (Spiegelhalter et al. 2003)
to implement our approach. The codes used for fitting the
model are available from the first author on request.

APPLICATION

To illustrate our approach, we used a long-term dataset on
the relationship between body mass and survival of adult
sociable weavers (P. socius) at Benfontein Game Farm, in
the Northern Cape Province, South Africa (Covas et al. 2002).
From 1993 to 2000, the birds were captured with mist nets
and individually banded with a numbered metal band. Age
of birds was determined based on developmental indices. A
total of 977 birds weighted as adults were banded and re-
leased. Covas et al. (2002) provide further details on the MR
protocol. The theoretical prediction is that body mass rep-
resents a trade-off between the risks of starvation at low mass
and predation at high mass. A previous analysis of the data
(Covas et al. 2002) suggested that a nonlinear relationship
held across years (i.e., «ij 5 «i).

Body mass was measured to the nearest 0.5 g each time a
bird was captured (so that some individuals were weighed
several times). In general, individual body mass may not
remain constant over time. For instance, it may vary with
individual age or with more or less favorable environmental
conditions (seasons or years). As a consequence, incorpo-
rating time-dependent individual covariates in MR models is
not straightforward (Pollock 2002). For instance, Covas et
al. (2002) averaged body mass over all captures for each
individual (hereafter, standardization 1). However, we sub-
sequently discovered that there is substantial interannual var-
iability in measurements of body mass in this dataset. In
particular, body mass was lower and less variable in the more
recent years, perhaps due to a change in capture protocols,
and this introduces a potential bias in estimating survival.
To eliminate these temporal effects, we standardized body
mass so that its mean and variance were equal among years
(see Conroy et al. 2002). We then averaged these standardized
values over all captures for each individual (hereafter, stan-
dardization 2).

We generated two chains of length 200,000, discarding the
first 100,000 as burn-in. These simulations took approxi-
matively 40 h on a PC (512 Mo RAM, 2.6 GHz CPU). Con-
vergence was assessed using the Gelman and Rubin statistic,
also called the potential scale reduction, which compares the
within to the between variability of chains started at different
and dispersed initial values (Gelman 1996).

We applied our model to the sociable weaver dataset using
quadratic P-splines (i.e., P 5 2). Unfortunately, clear guide-
lines do not exist for choosing the degree of a P-spline. How-
ever, as a rule of thumb, the higher the P-spline order, the
smoother the fitted curve. For our example, we checked vi-
sually that cubic P-splines (i.e., P 5 3) did not significantly
improve the fit.

With standardization 1, we found a lower survival for adult
birds that were lighter or heavier than the mean (the survival
being maximal around the mean phenotype over the whole
sample). This analysis would support the idea that body mass
is under stabilizing selection (Fig. 1A, dashed line), in agree-
ment with the earlier analysis of Covas et al. (2002). The
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FIG. 1. Relationship between survival and body mass in sociable weavers. (A) P-splines medians are displayed using standardization
1 (dashed line) and standardization 2 (solid line). (B) Medians (solid line) with 95% pointwise credible intervals (shaded area) for the
P-splines approach, along with medians for the quadratic (dotted line) and cubic (dashed line) models are displayed. In (B), the covariate
values are also shown on the x-axis using standardization 2.

adjusted P-spline also shows that heavier individuals survive
better then the lighter ones. With standardization 2, we also
found a lower survival for adult birds that were lighter than
the mean. However, we also found that heavier individuals
survived much better (Fig. 1A, solid line). The two analyses
clearly indicate that the effect of body mass on survival de-
pends on the standardization. Because standardization 2 takes
into account annual variability in measures of variance, it
should yield the more robust approach. As a consequence,
this reanalysis gives less support for stabilizing selection on
body mass in this species.

We can compare this P-spline approach to the parametric
alternatives used in Covas et al. (2002). Conveniently, a poly-
nomial adjustment can be obtained as a particular case of the
penalized splines approach with bk 5 0 for all k in equation
(2). We can therefore adjust the quadratic relationship be-
tween body mass and survival (using P 5 2), the best model
in Covas et al. (2002), to more directly compare the P-spline
and parametric approach. For this, we used standardization
2. The quadratic model differs markedly from the P-spline:
with the quadratic model (Fig. 1B, dotted line), lighter in-
dividuals have a higher survival while the heavier ones have
a lower one, compared to the P-spline (Fig. 1B, solid line).
The quadratic model is nearly symmetrical: individual with
body mass at either extreme of the distribution have similarly
low survival. In contrast the P-spline is very asymmetrical,
with heavier individuals surviving better then the lighter

ones. However, we emphasize that these conclusions are
based in each case on a small number of observations at each
end of the phenotype distribution, especially for the very
heavy individuals. Nevertheless, this comparison shows that
the precise shape of the body mass–survival relationship is
overconstrained when fitted with the quadratic model. Our
reanalysis challenges the stabilizing selection hypothesis and
shows that this dataset does not unambiguously disentangle
directional and stabilizing selection on body mass.

The P-spline may help in suggesting alternative and more
appropriate parametric models if desired. In our case, the
shape of the adjusted P-spline suggests that a cubic relation-
ship between survival and body mass would be more appro-
priate. This adjusted cubic relationship (Fig. 1B, dashed line)
is, overall, a better match to the P-spline, although it predicts
even higher survival for the heavier individuals.

To compare more formally these different models (qua-
dratic, cubic, and P-spline), we used the mean square pre-
dictive error (MSPE; Gelfand and Ghosh 1998). In our case,
the MSPE compares the observed frequencies with the pre-
dicted frequencies of the individual capture histories. The
posterior mean of the MSPE can be computed when esti-
mating parameters of a given model and measures its ade-
quacy (the most adequate model corresponding to the lowest
MSPE). Based on this criterion, the cubic model is more
adequate than the quadratic one (0.340 vs. 0.347), whereas
the P-spline is similar to the latter (0.347). Using a frequentist
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analysis and program MARK (White and Burnham 1999),
model selection based on the standard AIC (e.g., Burnham
and Anderson 2002) gives the same outcome, the cubic being
a better model than the quadratic (AIC scores 1946 and 1941,
respectively).

DISCUSSION

We developed a nonparametric model for assessing the
form of natural selection on a quantitative trait using lon-
gitudinal studies based on MR data. Our approach may be
viewed as a combination of that by Kingsolver and Smith
(1995) of using MR models to cope with imperfect detection
of individuals and the method proposed by Schluter (1988)
of using cubic splines to model nonparametrically the fitness
function.

Survival and Body Mass in Sociable Weavers

Our reanalysis of the variation in survival with body mass
in P. socius illustrates the kind of information that can be
obtained with our method. First, and in agreement with pre-
vious parametric analyses (Covas et al. 2002), we found that
lighter individuals suffer a drastic reduction in survival. Sec-
ond, we found that the survival function is not symmetric:
individuals that are average or heavier than average have
broadly similar survival, in both the P-spline or the cubic
model approach. This result indicates that body mass may
not be under stabilizing selection as suggested previously,
although any conclusion contains considerable uncertainty
because of the few very heavy birds sampled (see Fig. 1B).
A more intensive sampling effort of heavy individuals would
probably be necessary to establish more firmly whether sta-
bilizing or directional selection is operating on body mass.
More technically, the asymmetry in the fitness surface was
not captured by a simple quadratic regression of survival on
body mass. However, a cubic regression would have detected
this caveat. This situation illustrates how the spline-fitting
method can suggest the appropriate parametric model, in-
creasing the chances that no essential feature of the fitness
surface is overlooked. Finally, this case study shows that
uncontrolled time variation in the individual covariates (stan-
dardization 1 vs. 2) may significantly affect model adjustment
and the resulting conclusions. A more explicit modeling of
the time dependence in the individual covariates would be a
significant expansion of the methods described here.

Method’s Limitations and Prospects

Natural selection may act on combinations of traits. As a
consequence, detecting apparent stabilizing selection on a
focal trait may be due to phenotypic correlation of the focal
traits with traits under direct stabilizing selection. To dis-
entangle direct and correlated stabilizing selection requires
incorporating as many traits as possible in a multivariate
analysis, even if it seems impossible to include them all
(Lande and Arnold 1983; Mitchell-Olds and Shaw 1987; Bro-
die et al. 1995). Our method is incomplete in this respect,
and further developments are needed to extend it to the mul-
tivariate case. More generally and like with the Lande and
Arnold method, the inclusion of several possible covariates

(e.g., age, sex), if available, is important in making robust
inferences on the form of selection on a particular trait or set
of traits. For instance, if young birds are lighter and old
individuals are heavier and both have low survival for a rea-
son unrelated to their body mass, the analysis of a dataset
containing individuals of different ages may indicate (spu-
riously) that body mass is under stabilizing selection (when
this effect is not controlled for by an age covariate). Our
approach can be generalized by considering a semiparametric
alternative in simple cases (Ruppert et al. 2003; Gimenez et
al. 2006), where fitness is defined as an additive function of
several traits that are entered either nonlinearly or linearly
into a model. For instance, in our case, if the sex of indi-
viduals was available, the same spline could be adjusted for
male and female mean body size, along with a binary indi-
cator variable to allow for a potential difference between
them.

As with many multivariate analyses, the measurement of
correlated traits can lead to numerical instabilities. To cope
with this multicollinearity issue, one solution would be to
reduce the set of traits under study (Lande and Arnold 1983;
Phillips and Arnold 1989) and then plot selection as a func-
tion of one or two principal components. Although the pro-
portion of explained variance can be high in phenotype da-
tasets, the main drawback of this method is that the major
axes are determined for phenotypic variation alone, regard-
less of the fitness surface. A more satisfying method has been
proposed by Schluter and Nychka (1994), who estimated and
visualized fitness surfaces using projection pursuit regres-
sion. This method reduces the number of dimensions by find-
ing new linear combinations of the original predictors that
explain most of the variation in fitness. These new synthetic
summaries are then related to fitness using univariate cubic
splines. The extension of the Schluter and Nychka (1994)
approach to MR data is the object of ongoing work.

Environmentally induced covariances between fitness and
traits or inbreeding may lead to bias in estimating the effect
of selection (Willis 1996; Kruuk et al. 2003). To disentangle
confounding effects, a path analysis (Shipley 2000) appears
to be an efficient method (Kingsolver and Schemske 1991;
Scheiner et al. 2000), because it allows for partitioning the
correlations among variables by identifying a priori causal
relationships between traits. Because we permit the survival
to vary as a function of several traits with additional random
effects «ij, an a priori model may be specified under the form
of a structured covariance matrix for the «ij values, and there-
fore provide a structural equation modeling MR data. Alter-
natively, breeding values may be used if available in lieu of
phenotypic values in a way analogous to Rausher’s (1992)
method, to correct the bias resulting from environmental co-
variances.

Our approach requires the efficient comparison of models.
A model selection procedure may allow for distinguishing
between competing link functions (Kingsolver and Smith
1995) or for proposing alternative parametric forms to the
nonparametric model if desired (as we did here). Model se-
lection in a Bayesian framework is still under debate and the
subject of ongoing research (e.g., Johnson and Omland 2004).
We opted for computing the MSPE criterion proposed by
Gelfand and Ghosh (1998), given its straightforward com-
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putation from the MCMC samples. We could have used other
alternatives, such as the AIC (Burnham and Anderson 2002)
or the deviance information criterion (DIC) introduced by
Spiegelhalter et al. (2002). The MSPE, AIC, and DIC each
seek a compromise between the goodness-of-fit of a model
and its complexity. Nevertheless, for the AIC, it is not clear
how to compute the number of parameters in the presence
of random effects, and thus the AIC is not well suited for
our purposes here. Also, it has been shown that the DIC may
be misleading in the context of hierarchical models such as
ours (Spiegelhalter et al. 2002), and thus we do not recom-
mend its use. We did not explicitly investigate goodness-of-
fit in this study, as Covas et al. (2002) earlier showed that
fit of models was not problematic for these data. However,
if needed, Bayesian p-values may be obtained, as explained
in Brooks et al. (2000).

When using MR data to estimate natural selection on a
quantitative trait, it is important to distinguish between in-
dividual covariates that are fixed (typically some attribute of
the individual measured at the time of marking such as sex),
or time varying (a characteristic measured at each encounter
occasion that may vary over time such as body condition).
The implementation of the former is straightforward (Hoff-
man and Skalski 1995; Kingsolver and Smith 1995), and in
our example we considered body mass to be a fixed variable
by averaging its values over all captures for each individual.
We realize that body mass is likely to show significant tem-
poral variation over the life span of the individual and there-
fore could be considered a time-varying individual covariate.
However, because the covariate values can only be known
upon capture, the individual histories inevitably exhibit miss-
ing values when individuals are not encountered.

The issue of handling missing data in MR analyses is dif-
ficult to address, and there is not a definitive way to do it at
the moment. In our example, year variation was accounted
for prior to computing mean individual body mass. This
method implicitly copes with the problem of missing values
of the covariate. A more refined correction could be per-
formed by correcting in the same way for individual age
variation if age is available (Conroy et al. 2002). Other ap-
proaches are possible to handle time-varying covariates. One
possibility requires quantitative traits to be classified into
discrete categories and data analyzed using multistate MR
models (Arnason 1973; Schwarz et al. 1993) that allow tran-
sitions between the covariate states and account for missing
covariate values (Nichols et al. 1992). However, besides the
loss of information, the number of parameters grows expo-
nentially with the number of states, therefore causing nu-
merical problems that have to be dealt with (Gimenez et al.
2003, 2005). Alternatively, as a Bayesian analysis treats
missing data as parameters to be estimated, our method could
be extended to cope with this issue (e.g., Bonner and Schwarz
2005). However, this would require strong assumptions re-
garding the distribution generating the missing covariate val-
ues, which might obscure the true relationship between sur-
vival probability and the covariate. Consequently, although
methods for handling missing data are still the object of active
research, we suggest that a useful step would consist of com-
paring the three approaches described above, based on sim-

ulations contrasting hypotheses on the amount of missing
data and the process generating the missing data.

Overall, this new method may be applied in a variety of
contexts where the dependency of a covariate to a fitness trait
is under study. In particular, it may be helpful to better un-
derstand how survival changes with age in a natural popu-
lation, which so far has only been attempted using a cum-
bersome piecewise regression approach (Loison et al. 1999;
Bryant and Reznick 2004).
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