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In a capture–recapture analysis, uncertainty in the parameter estimates is usually ex-
pressed by presenting classical Wald-type confidence intervals. This approach involves (1)
the assumption that the maximum likelihood estimates are asymptotically normal and (2)
numerical computation of the variance-covariance matrix of these estimates. When the
sample size is small or when the estimates are on the boundary of their domain, a Wald
confidence interval often performs badly. A natural alternative is to use profile-likelihood
confidence intervals. In general, these intervals require a greater amount of computation.
We propose a new implementation of this approach that is efficient, both in reducing the
amount of computation and in coping with boundary estimates. We also show how profile-
likelihood confidence intervals can be adjusted for overdispersion. Simulations were used
to check whether nominal coverage levels were attained, and allowed us to compare this
approach with the classical Wald procedure. We illustrate this work by considering a multi-
state model for a sooty shearwater (Puffinus griseus) population.

Key Words: Boundary estimate; Multi-state model; Nominal coverage level; Overdisper-
sion; Profile-likelihood interval; Venzon and Moolgavkar’s algorithm.

1. INTRODUCTION

Multi-state capture–recapture models (Arnason 1972, 1973; Schwarz, Schweigert, and
Arnason 1993; Lebreton and Pradel 2002; Williams, Nichols, and Conroy 2002, pp. 454–
468) are a natural generalization of the single-state Cormack-Jolly-Seber (CJS) model
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(Cormack 1964; Jolly 1965; Seber 1965) for the estimation of survival probabilities us-
ing captures or resightings of marked individuals (Lebreton, Almeras, and Pradel 1999).
In a multi-state model, an individual can move between states, with extra parameters rep-
resenting the probabilities of such transitions. States may correspond to geographical sites
(multi-site models) or to states defined at the individual level, such as reproductive state.
These models provide a great deal of flexibility in both modeling biological phenomena
(Clobert 1995; Nichols and Kendall 1995; Lebreton and Pradel 2002) and in addressing a
variety of biologically relevant questions (Lebreton and Pradel 2002; Williams et al. 2002,
pp. 454–468).

Both special cases and generalizations of the basic time-dependent multi-state model
have been proposed (Brownie et al. 1993). Lebreton et al. (2003), Lebreton and Pradel
(2002), and Williams et al. (2002, pp. 454–468) described recent generalizations, in par-
ticular age-dependent multi-state models that allow estimation of both recruitment and
age-dependent dispersal probabilities.

These developments have been made possible largely by the development of appro-
priate software (MARK, White and Burnham 1999; MSSURVIV, Hines 1994; M-SURGE,
Choquet et al. 2003). In these programs, maximum likelihood estimates (MLE) of the pa-
rameters (θ) are obtained numerically (Brownie et al. 1993) and confidence intervals can
be calculated using a variety of methods.

The most common method for calculating confidence intervals is the so-called Wald
procedure, which relies on the asymptotic normality of θ̂, the MLE of θ. However, Wald-type
intervals can perform very badly for small sample sizes due to poor estimates of sampling
variance, bias in the MLE, and/or asymmetry in the sampling distribution of the MLE
(Beale 1960; Hudson 1971; Donaldson and Schnabel 1987). These problems are known to
occur for both open (single-state) and closed capture–recapture models (White, Anderson,
Burnham, and Otist 1982; Garthwaite and Buckland 1992; Evans, Kim, and O’Brien 1996).
Although, to our knowledge, no empirical study of such intervals has been carried out for
multi-state capture–recapture models, the complexity of the likelihood for such models and
the often large number of parameters they involve (Viallefont and Lebreton 1993) suggest
that these problems can only worsen. In particular, Ratkowsky (1988, pp. 20–25) argued
that in general Wald-type intervals can be a poor choice in the context of nonlinear modeling
(see also Cook and Weisberg 1990).

Burnham et al. (1987 p. 214) advocated transformation of θ onto the logistic scale
[implemented in software MARK (White and Burnham 1999) and M-SURGE (Choquet et
al. 2003)] in order to obtain improved confidence intervals, followed by back-transformation
to the original scale (Lebreton, Burnham, Clobert, and Anderson 1992). However, as pointed
out by Buckland and Garthwaite (1991), such a generic transformation may not be efficient
for all situations. Moreover, when dealing with probabilities, use of a logistic transformation
can often lead to any boundary estimates having an estimated variance effectively equal to
zero.

The alternative of using profile-likelihood confidence intervals (Cox and Hinkley 1974,
p. 343) therefore has some appeal (Lebreton 1995; Seber and Schwarz 2002). These intervals
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are generally expected to provide coverage rates closer to nominal levels than Wald-type
intervals (Ratkowsky 1988, pp. 20–25; Cook and Weisberg 1990), even for small sample
sizes (Bates and Watts 1980). Cormack (1992), Agresti (1994), Lloyd (1995), and Evans et
al. (1996) made use of profile-based confidence intervals for estimating the size of an animal
population, while Morgan and Freeman (1989) derived profile-based confidence intervals
for the survival probabilities of first-year birds with ring-recovery data and Lebreton et al.
(1992) provided an example for the CJS model.

Calculation of a profile-likelihood interval requires time-consuming optimization over
the other parameters. To help overcome this problem, Venzon and Moolgavkar (1988)
proposed an algorithm that requires less computation. We therefore consider it worth-
while investigating the performance of profile-likelihood-based confidence intervals for
open multi-state capture–recapture models, and comparing these with Wald-type intervals
[note that the usual CJS model is a particular case of a multi-state model (Lebreton et al.
1999)].

In the following section we apply the procedure proposed by Venzon and Moolgavkar
(1988) to multi-state capture–recapture models. We then conduct a Monte Carlo study
of the performances of both profile-likelihood and Wald-type intervals for such models.
Bootstrap-based confidence intervals (Efron and Tibshirani 1993; Davison and Hinkley
1997) could also have been investigated in this article. In a capture–recapture context, most
of the work on bootstrap intervals has focused on estimation of population size (Huggins
1989; Garthwaite and Buckland 1992; Evans et al. 1996), while use of such intervals for
open single-state capture–recapture models has received little attention (Buckland 1980;
Buckland and Garthwaite 1991); for multi-state models, there appears to be no published
work in this area. The bootstrap approach is currently not implemented in standard capture–
recapture software, probably due to the computational burden. We therefore decided not to
consider bootstrap intervals in our simulations, although they may provide a good alternative
to profile-likelihood intervals. Finally, we compare the performance of Wald, bootstrap, and
profile-likelihood intervals for a set of multi-state capture–recapture data from a population
of sooty shearwater (Puffinus griseus).

2. PROFILE-LIKELIHOOD BASED CONFIDENCE INTERVALS
FOR CAPTURE–RECAPTURE MODELS

2.1 COMPARISON WITH TRADITIONAL APPROACHES

This work was motivated by estimation problems encountered while analyzing the
transitions between reproductive states (breeder and non-breeder) of Sooty shearwaters
(Puffinus griseus). The dataset encompasses seven years (Table 1) and was initially analyzed
by Scofield, Fletcher, and Robertson (2001).

The model we considered is denoted {Ff , Pc,Ψf.to.t} because it involves:

• survival probabilities F that depend on the site of departure (denoted f for “from”);
• capture probabilities P that depend on the current site (denoted c for “current”); and
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Figure 1. Graph of the profile deviance for the parameterψB,NB
3 of the model {Ff , Pc,Ψf.to.t} (solid line) for

the Sooty shearwater dataset (Scofield et al. 2001). The parameter ψB,NB
3 is estimated on the lower boundary,

resulting in failure of usual maximum likelihood techniques to provide an estimate of variance. The profile-
likelihood-based 95% confidence interval is [0; .03]; it was obtained by a combination of the Venzon and Mool-
gavkar’s algorithm and a cubic interpolation method (ten points were used for this example). The dashed line is
the deviance at the MLE plus 3.84. Note that the deviance is −2log l, where l is the likelihood function.

• transitions probabilities Ψ that depend on both site of departure and site of arrival
(denoted to) and time (denoted t); an interaction is indicated by the “dot” operator,
for example, the interaction of sites and time in transition probabilities is expressed
as Ψf.to.t.

In addition, for parameters, we used the same notation as in Scofield et al. (2001),
where lower indices stand for time and upper indices for states. For example, the transition
probability between occasions 3 and 4 from state breeder to state nonbreeder is denoted
ψB,NB

3 .
It has to be noted that the transition parameterψB,NB

3 was estimated at the boundary of its
domain, close to 0 (Figure 1). As a consequence, standard software such as MARK and M-
SURGE failed to compute Wald-type confidence intervals. In fact, usually the gradient at the
MLE on a boundary is not zero and the matrix of variance-covariance is no longer reasonably
estimated by the negative inverse of the Hessian, as assumed in the Wald approach. As with
an estimate close to, but not on, the boundary, it is numerically difficult to obtain a good
estimate of the Hessian. The profile-likelihood approach does not suffer from this problem.
We therefore decided to use profile-likelihood intervals and to compare these with Wald-type
intervals for different situations.
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The principle of the profile-likelihood approach to calculating confidence intervals is
as follows. Let θ̂ be the MLE of a parameter vector θ ∈ Θ ⊆ �p and let l(•) be the
log-likelihood function, then

l(θ̂) = max
θ∈Θ

l(θ). (2.1)

In the profile-likelihood approach, one considers l(θ) as a function of a single parameter of
interest β = θj , by treating the others as nuisance parameters and maximizing simultane-
ously over them. The profile likelihood for β is thus defined as

lj(β) = max
θ∈Θj(β)

l(θ), (2.2)

where Θj(β) is a restriction of the parameter space Θ defined as Θj(β) = {θ ∈ Θ|θj = β}.
A 100(1 − 2α)% profile-likelihood confidence interval for θj is given by

{
β

∣∣∣−2
[
lj(β) − l

(
θ̂
)]

≤ q1(1 − α)
}
, (2.3)

where q1(1 − α) is the 100(1 − α)th quantile of the χ2 distribution with one degree of
freedom (see Cox and Hinkley 1974, p. 343). A technique commonly used to compute
the confidence interval endpoints is derived directly from the definition (2.3): using, for
example, the bisection method to find the zeroes of the function lj(β) − l∗, where l∗ is the
constant l∗ = l(θ̂) − .5q1(1 − α), the likelihood has to be optimized according to (2.2)
at each step of the algorithm, resulting in two embedded levels of optimization. This task
requires such a computational effort that its limited use can easily be understood.

2.2 VENZON AND MOOLGAVKAR ALGORITHM

Venzon and Moolgavkar (1988) proposed a faster algorithm for computing the confi-
dence interval endpoints as solutions of the system of nonlinear equations

F (θ) =


 l(θ) − l∗

∂l

∂ω
(θ)


 = 0, (2.4)

where ω =
(
θ1, . . . , θj−1, θj+1, . . . , θp

)′
is the parameter vector θ without its jth coordi-

nate. Because this is a single-step optimization problem, the computational burden is greatly
reduced. In solving (2.4), Venzon and Moolgavkar (1988) proposed a two-fold modified
Newton-Raphson algorithm (1) by providing as a starting value, the MLE θ̂ moved toward
the left or right endpoint of the interval by an initial step h and (2) by taking all the second
derivatives of l(•) into account in the Newton-Raphson iterations in order to improve the
rate of convergence toward interval endpoints.

2.3 FINDING THE BEST STARTING VALUE

The crucial point of this algorithm is a good starting value for the modified Newton
algorithm, as it is well known to converge only locally. The first step proposed by Venzon
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and Moolgavkar (1988) implies that the gradient at the MLE is zero and that the likelihood
is close to a quadratic function. When these assumptions are not met, h may be too small
or too large, resulting in nonconvergence of the algorithm. For this reason, we propose a
modification to the computation of the starting value. The idea is to compute the profile
likelihood atn equally distributed values on (0,1) and then use interpolation to find estimates
of interval endpoints. The process used for computing the two interval endpoints is given
in the following algorithm.

• Step 1: Form the vector of n points on (0, 1) called x = (x1, . . . , xn), where
xi = i/(n+ 1).

• Step 2: Calculate the vector y = (y1, . . . , yn) where yi−lj(xi) = maxθ/θj=xi
l(θ).

• Step 3: Form the interpolation-function w such that w(xi) = yi, i = 1, . . . , n. We
chose w to be a piecewise-cubic Hermite interpolation function.

• Step 4: Approximate the two closest points x(1) and x(2) to θ̂j such that for k =
1, 2, w(x(k)) = l∗, and the two vectors z(k) = arg maxθ/θj=x(i)l(θ). Form the two
initial starting points (z1(i), . . . , zj−1(k), x(i), zj+1(i), . . . , zp(i))′ for k = 1, 2.

After a few attempts, we found that 10 points was a good choice in Step 1 so that this
number was retained throughout the article. Note that Step 2 is time-consuming, but far less
so than using a bootstrap approach. The algorithm described above works well and appears
necessary in atypical cases (see Section 4). Nevertheless, it should be mentioned that the
interpolation may make the calculations take longer in standard cases.

2.4 SPECIAL SITUATIONS

The procedure for the computation of profile-likelihood intervals relies on asymptotic
normality of the MLE, as the deviance then has a χ2 distribution. When the parameter is at
or close to a boundary, the asymptotic distribution of the deviance is known to be affected
in a way that depends on whether other parameters are also at a boundary (Self and Liang
1987; Meeker and Escobar 1995). In developing our approach, we did not attempt to allow
for this situation as multi-state capture–recapture parameters only lie on a boundary in very
special cases. Survival probabilities will never be exactly 0 or 1. Capture probabilities may
be 0 when the field site is not visited, and may be 1 when all individuals are recaptured
(Cam et al. 1998). In both these cases, we suggest setting the relevant parameter value to 0
or 1 and to then make inference conditional upon this value. When a parameter estimate is
on a boundary (but the parameter intrinsically cannot be on such a boundary), we use our
algorithm to compute only the other endpoint; see Section 4.

Extra-multinomial variation is another situation that requires consideration. When this
is present, confidence intervals will be too narrow unless some adjustment is made to their
calculation. Wald-type intervals are often adjusted by first estimating a variance-inflation
or heterogeneity factor (Lebreton et al. 1992; Burnham et al. 1987), ĉ, as the ratio of the
goodness-of-fit test for the model considered to its associated degrees of freedom df. The
(1 − 2α) Wald interval endpoints are then computed as θ̂ ± tdf(1 − α) · √

ĉ · σ̂θ̂, where
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Table 1. Coverage Rates for Wald and Profile-Likelihood 95% Confidence Intervals. The model
{Ff,Pc,Ψf. to} with two states and five capture occasions was considered. We used param-
eters f 1 = .6, f 2 = .8, p1 = .4, p 2 = .7, ψ12 = 2/3, ψ21 = 5/8 to simulate 2,500 multistate
capture–recapture history data sets. The states are labeled 1 and 2.

Model {Ff,Pc,Ψf. to} parameters

Number of newly
marked individuals f 1 f 2 Ψ21 Ψ12 p1 p2

50 Profile .96 .96 .96 .94 .96 .97
Wald .96 .94 .95 .93 .98 .95

100 Profile .95 .96 .96 .97 .96 .96
Wald .96 .95 .96 .96 .98 .94

500 Profile .95 .95 .95 .95 .95 .95
Wald .95 .95 .95 .95 .95 .95

tdf(1 − α) is the (1 − α)th quantile of the Student distribution with df degrees of freedom
and σ̂θ̂ is the estimated standard error of θ (Lebreton et al. 1992). An analogous adjustment
can be made for profile-likelihood intervals. This involves modifying (2.4) by replacing l∗

with l(θ̂) − .5 · ĉ · F1,df(1 − α) where F1,df(1 − α) is the (1 − α)th quantile of the Fisher
distribution with 1 and df degrees of freedom; again, see Section 4.

3. SIMULATION STUDY

We considered three different situations, varying the number of encounter histories and
the time- and state-dependency of the survival, capture and transition probabilities:

Scenario 1: Model {Ff , Pc,Ψf.to} with all parameters state-dependent only, K = 5
and a = 2 (Table 1).

Scenario 2: Model {Ft, P,Ψf.to} with recapture and survival probabilities time-
dependent and transitions probabilities state-dependent, K = 3 and a = 2 (Table 2).

Table 2. Coverage Rates for Wald and Profile-Likelihood 95% Confidence Intervals. The model
{Ft,Pt,Ψf. to} with two states and three capture occasions was considered. We used ac-
tual parameters f1 = .6, f 2 = .8, p 2 = .4, p3 = .7, ψ12 = 2/3, ψ21 = 5/8 to simulate 2,500
multistate capture–recapture history datasets. The states are labeled 1 and 2.

Model {Ft,Pt,Ψf. to, } parameters
Number of newly

marked individuals f1 p2 ψ21 ψ12

50 Profile .94 .95 .95 .96
Wald .96 .96 .95 .96

100 Profile .95 .95 .95 .95
Wald .96 .95 .95 .95

500 Profile .95 .95 .95 .95
Wald .95 .95 .95 .95
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Table 3. Coverage Rates for Wald and Profile-Likelihood 95% Confidence Intervals. The model
{F,P,Ψf. to.t} with two states and three capture occasions was considered. We used pa-
rameters f = .6, p = .4, ψ21

1 = 1/4, ψ12
1 = 3/4, ψ21

2 = 5/8, ψ12
2 = 1/3 to simulate 2,500

multistate capture–recapture history datasets. The states are labeled 1 and 2.

Model {F,P,Ψf. to. t} parameters
Number of newly

marked individuals f ψ21
1 ψ12

1 ψ21
2 ψ12

2 p

50 Profile .97 .93 .94 .94 .94 .97
Wald .93 .96 .97 .96 .97 .98

100 Profile .96 .94 .94 .94 .95 .96
Wald .95 .97 .96 .95 .96 .96

500 Profile .95 .95 .95 .94 .95 .94
Wald .95 .95 .96 .95 .95 .94

Scenario 3: Model {F, P,Ψf.to.t} with recapture and survival probabilities constant
and transitions probabilities state- and time-dependent, K = 3 and a = 2 (Table 3).

In addition, following a referee’s comment, we considered one more scenario. To obtain
a situation comparable to the real case we examine in Section 4, we modified Scenario 1 in
order to have a transition probability being near the boundary (see Table 4).

For each scenario, we simulated 2,500 capture–recapture history datasets using 50,
100, and 500 newly marked individuals for each occasion and state of release. For each
set of data, profile-likelihood, and Wald-type 95% confidence intervals were calculated,
with the latter being calculated on the logit scale and then back-transformed. The estimated
coverage rate was the proportion of the 2,500 intervals that contained the true parameter
value. Because the MLE is only asymptotically unbiased, we calculated its mean square
error (MSE). All programs were written in MATLAB (Version 6.5).

The results in Tables 1–3 show that, across all three scenarios, both the profile-likelihood
and Wald-type intervals achieve the nominal coverage rate as long as the number of releases
exceeds a hundred. Furthermore, when the number of releases is smaller, there appears to
be no gain in using profile-likelihood rather than Wald-type intervals. In addition, a value
near the boundary affects the corresponding parameter coverage rate and the other model
parameters as well (Table 4).

Table 4. Coverage Rates for Wald and Profile-Likelihood 95% Confidence Intervals. The model
{Ff,Pc,Ψf. to} with two states and five capture occasions was considered. We used parame-
ters f 1 = .6, f 2 = .8, p1 = .4, p 2 = .7, ψ12 = 2/3, ψ21 = .002 to simulate 2,500 multistate
capture–recapture history datasets. The states are labeled 1 and 2.

Model {Ff,Pc,Ψf. to} parameters
Number of newly

marked individuals f 1 f 2 ψ12 ψ21 p1 p 2

100 Profile .96 .94 .95 .98 .94 .95
Wald .92 NA .94 NA NA NA

500 Profile .95 .95 .95 .90 .95 .95
Wald .94 .95 .95 .84 .96 .93
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4. EXAMPLE

The sooty shearwaters dataset (Scofield et al. 2001) provides one illustration among
others (Lebreton and Pradel 2002; Williams et al. 2002, pp. 454–468) of how multi-state
capture–recapture models can be used to study trade-offs between costs of current repro-
duction on future survival and/or on future reproduction (Roff 1992; Stearns 1992). In what
follows, we consider the simple model {Ff , Pc,Ψf.to.t} for illustration. We refer the reader
to Scofield et al. (2001) for a complete treatment of the dataset. Following Gimenez, Cho-
quet, and Lebreton (2003), we first checked that all parameters were separately estimable
{Ff , Pc,Ψf.to.t}. Then, using the results of Pradel, Wintrebert, and Gimenez (2003), a
goodness-of-fit test was performed for this model in order to estimate a variance inflation
factor. We found that the level of extra-multinomial variation was high, with ĉ = 5.2. We
therefore calculated both raw and adjusted Wald-type and profile-likelihood intervals, as
well as nonparametric bootstrap intervals (Table 5).

One MLE for the parameter ψB,NB
3 was on the boundary. Our algorithm leads to a 95%

confidence interval for this parameter of [.00; .03] (Figure 1). Both the profile-likelihood and
bootstrap methods could be used for this parameter, unlike the Wald method. The unadjusted
Wald-type and profile-likelihood intervals are very similar, while the bootstrap intervals ap-
pear to be more conservative (wider) in general, although in some cases the three methods
gave similar results (except for parameter ψB,NB

1 ). Although the bootstrap approach auto-
matically takes a part of the possible dependence and/or heterogeneity between individuals
into account, the uncorrected Wald and profile-likelihood intervals are both highly affected
in the same way. When adjusted for extra-binomial variation, both the Wald and profile-
likelihood confidence intervals become wider than their bootstrap counterpart. These results
seem to reflect the fact that (at least for a large “sample size”) a nonparametric bootstrap
could be expected to be an improvement over unadjusted theory-based methods, but that it
would not necessarily allow for all of the overdispersion. Note that the profile-likelihood
intervals were generally computed in approximately five minutes, while almost two and
a half hours were required for the bootstrap intervals on a PC (Pentium II, 256Mo RAM,
1.2GHz CPU).

5. DISCUSSION

Profile-likelihood confidence intervals provide a compromise between Wald-type in-
tervals and their bootstrap counterparts because (1) despite the high degree of nonlinearity
in multi-state capture–recapture models, the coverage rates are comparable to nominal lev-
els; (2) much less computation is required than for bootstrap intervals; and (3) using the
algorithm presented here, the profile-likelihood approach can cope with boundary estimates.

Our simulation study suggests that profile-likelihood intervals do not perform better
than Wald-type intervals when the sample size is small. It should be noted that we implicitly
took the number of releases as our definition of the sample size (see, e.g., MacKenzie 2001).
However, a high degree of data-sparseness can still occur with a large number of releases; for
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Table 5. Wald-Type, Nonparametric Bootstrap and Profile-Likelihood-Based Confidence-Intervals (CI)
for the Parameters of the Model {Ff,Pc,Ψf. to. t} for the Sooty Shearwater Data (Scofield et al.
2001). Both the Wald-type and the profile-likelihood-based CI are given under their unadjusted
and adjusted for overdispersion form (see text).

Adjusted Wald CI Adjusted Profile CI
Parameters MLE Raw Wald CI Bootstrap CI Raw Profile CI

f NB .81 [.71 ; .87] [.75 ; .84] [.71 ; .89]
[.77 ; .84] [.77 ; .84]

f B .84 [.76 ; .89] [.81 ; .86] [.75 ; .91]
[.81 ; .86] [.81 ; .86]

pNB .64 [.52 ; .75] [.59 ; .69] [.51 ; .81]
[.59 ; .69] [.59 ; .70]

pB .53 [.42 ; .63] [.42 ; .57] [.41 ; .65]
[.48 ; .57] [.48 ; .57]

ψB, NB
1 .12 [.00 ; .81] [.00 ; .29] [.00 ; .78]

[.03 ; .38] [.02 ; .33]
ψNB, B

1 .51 [.21 ; .80] [.36 ; .65] [.16 ; .85]
[.36 ; .65] [.36 ; .65]

ψB, NB
2 .02 [.00 ; .61] [.00 ; .07] [.00 ; .24]

[.00 ; .11] [.00 ; .07]
ψNB , B

2 .41 [.14 ; .74] [.25 ; .69] [.08 ; .76]
[.27 ; .56] [.26 ; .65]

ψB, NB
3 .00 NA [.00 ; .04] [.00 ; .16]

[.00 ; .03]
ψNB, B

3 .45 [.17 ; .76] [.28 ; .59] [.12 ; .80]
[.31 ; .59] [.30 ; .59]

ψB, NB
4 .01 [.00 ; .46] [.00 ; .03] [.00 ; .14]

[.00 ; .06] [.00 ; .04]
ψNB, B

3 .21 [.05 ; .56] [.10 ; .36] [.03 ; .70]
[.12 ; .35] [.12 ; .35]

ψB, NB
5 .24 [.12 ; .42] [.16 ; .37] [.09 ; .43]

[.17 ; .31] [.17 ; .30]
ψNB, B

5 .01 [.00 ; .45] [.00 ; .05] [.00 ; .14]
[.00 ; .06] [.00 ; .04]

ψB, NB
6 .68 [.46 ; .84] [.53 ; .76] [.44 ; .87]

[.59 ; .76] [.59 ; .76]
ψNB, B

6 .25 [.14 ; .41] [.19 ; .36] [.12 ; .43]
[.19 ; .32] [.19 ;.31]

example, when capture probabilities are high, resulting in many empty cells in them-array.
In such cases, classical theory does not hold (e.g., Bishop, Fienberg, and Holland 1975,
pp. 410–413). An extensive simulation study would be needed to explore and compare the
effect of sparse data on both profile-likelihood and Wald-type interval coverage rates; this
is the focus of current research. Note that CJS-type models are special cases of multi-state
models, and so our conclusions should also apply generally to those cases.

All the methods we have considered here assume that the likelihood is bell-shaped, at
least locally, near its maximum. This may not always be the case, especially with multi-state
models which are known to produce likelihoods with local maxima (Lebreton and Pradel
2002). The situation shown in Figure 2 might then arise, where the confidence region is the
union of two distinct intervals. The Wald approach cannot deal with this type of situation,
whereas, in principle, both the bootstrap and profile-likelihood approaches can. In practice,
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Figure 2. Graph of the profile deviance in presence of a local minimum. We fit the model {F, P,Ψf.to.t} to the
following artificial dataset with 7 capture occasions and 2 states (the number of times that the encounter history is
observed is between parenthesis): 2021202 (4); 2020201 (4); 2020202 (4); 2201021 (4); 1110101 (4); 1010101
(4); 1010102 (4); 2102011 (4) (Dupuis, pers. comm. and Gimenez 2003). The dashed line is the deviance at the
MLE plus 3.84. The 95% profile confidence interval for ψ21 is a reunion of both the two intervals [.28; .42] and
[.65; .95]. A similar plot can be obtained for ψ12 with [.20; .32] ∪ [.45; .74] as a 95% profile confidence interval.
Note that the deviance is −2 log l, where l is the likelihood function.

the algorithm we have presented here computes the deviance at several points and it is
possible to check the form of the likelihood function near the MLE. A more systematic
search might be considered in order to look for local minima. In general it is prudent to
examine profile likelihoods rather than simply calculate point estimates (Box and Jenkins
1976, pp. 224–226; Meeker and Escobar 1995; Lebreton and Pradel 2002).

The algorithm presented here is implemented in software M-SURGE (Choquet et al.
2003), a program specifically written to deal with and take advantage of recent developments
in multi-state capture–recapture models. It is freely available through the Internet at ftp:
//ftp.cefe.cnrs-mop.fr/biom/Soft-CR/.

[Received February 2004. Revised February 2005.]
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