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Abstract
Methods for investigating parameter redundancy.— The quantitative study of marked individuals relies
mainly on the use of meaningful biological models. Classical inference is then conducted based on the
model likelihood, parameterized by parameters such as survival, recovery, transition and recapture
probabilities. In classical statistics, we seek parameter estimates by maximising the likelihood. However,
models are often overparameterized and, as a consequence, some parameters cannot be estimated
separately. Identifying how many and which (functions of) parameters are estimable is thus crucial not
only for proper model selection based upon likelihood ratio tests or information criteria but also for the
interpretation of the estimates obtained. In this paper, we provide the reader with a description of the tools
available to check for parameter redundancy. We aim to assist people in choosing the most appropriate
method to solve their own specific problems.

Key words: Mark–recapture data, Mark–recovery data, Profile–likelihood, Analytical–numerical method,
Symbolic algebra software.

Resumen
Métodos para investigar la redundancia de parámetros.— El estudio cuantitativo de individuos marcados
se basa fundamentalmente en el uso de modelos biológicos significativos. Posteriormente, la inferencia
clásica se lleva a cabo a partir de la probabilidad del modelo, parametrizada mediante parámetros tales
como las probabilidades de supervivencia, de recuperación, de transición y de recaptura. En la estadística
clásica, intentamos obtener estimaciones de parámetros maximizando la probabilidad. Sin embargo, los
modelos a menudo se parametrizan en exceso, por lo que algunos parámetros no pueden estimarse de
separadamente. Por consiguiente, identificar qué parámetros, cuántos y qué funciones de los mismos
son estimables resulta crucial, no sólo para poder efectuar una adecuada selección de modelos basada
en pruebas de razón de verosimilitud o criterios de información, sino también para la interpretación de
las estimaciones obtenidas. En este trabajo facilitamos al lector una descripción de las herramientas
disponibles para verificar la redundancia de parámetros. Nuestro objetivo es ayudar a elegir el método
más apropiado para la resolución de sus problemas específicos.

Palabras clave: Datos sobre recaptura de marcas, Datos sobre recuperación de marcas, Probabilidad
del perfil, Método numérico analítico, Software de álgebra simbólica.
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tion function. A particular case of non–identifiability
usually occurs due to overparameterization. The
likelihood of a redundant model can be expressed
as a function of fewer than the original number of
parameters (Catchpole & Morgan, 1997). When
CMR protocols are considered, one is often faced
with this form of non–identifiability and that is prob-
ably the reason why "non–identifiable" has been
widely used in place of "parameter redundant" in
the literature.

To fix ideas, let us consider the standard mark–
recapture Cormack–Jolly–Seber (CJS) model with
K capture occasions. The raw encounter histories
can be fruitfully summarized in the so–called re-
duced m–array (Burnham et al., 1987, p.36) which
summarises the data in the form of the number of
individuals released per occasion i denoted Ri
(1 [ i [ K–1) and the number of first recaptures
given release at occasion i at the succeeding oc-
casions j (2 [ j [ K) denoted mij (table 1).

For instance, throughout this paper, we will con-
sider the well known Dipper example (Lebreton et
al., 1992). During the breeding season, over a
period of 7 years (1981–87), a total of 294 birds
were marked and resighted. The data are sum-
marized in table 2.

Conditioning on the releases and assuming
independence among cohorts, the CJS model like-
lihood can therefore be easily written down as a
product of multinomial probability distributions with
the m–array cell probabilities given in table 3 (e.g.
Lebreton et al., 1992).

For the CJS model, it is well known that the last
survival probability and the last recapture probabil-
ity cannot be estimated separately, only their prod-
uct being estimable (e.g. Lebreton et al., 1992).

Introduction

Capture–mark–recapture (CMR) models in the
broad sense include all the models developed to
estimate demographic parameters based on data
from marked animals. The initial papers are those
of Cormack (1964), Jolly (1965) and Seber (1965).
Over the past two decades, many improvements
of the methods have been provided, that have led
to both a diversification and a generalization of the
tools available. We can now describe briefly the
situation in this field as follows: when the marked
animals are recaptured (or resighted) alive, the
models used are "mark–recapture" models stricto
sensu. The parameters estimated in this case are
survival and capture probabilities. For a thorough
review of the developments of the method since
the sixties, including constancy over time, group
effects, constraints on the parameters, etc. see
Lebreton et al. (1992). In other cases, for example
game species, the animals are not seen again
during their lifetime, but their time of death is
known. Brownie et al. (1990) provide a clear re-
view of many of the models that can be used,
called "mark–recovery" models. The parameters
estimated are survival probabilities, and "return
probabilities", i.e. the probability that the mark of a
dead animal is found. See also the development
in Freeman & Morgan (1992). Integrated model-
ling of mark–recovery and mark–recapture data is
considered by several authors, see e.g. Catchpole
et al. (1998).

Models have also been developed to estimate
transition rates between sites or states jointly with
the survival probabilities, in either of the two main
situations above (Arnason, 1973; Schwarz et al.,
1993; Brownie et al., 1993). All these models have
a common structure and can be combined in the
framework of multi–state models, as has been
shown by Lebreton & Pradel (2002).

We shall here outline the common structure of
many CMR models. For details concerning the
one–site capture–recapture models, see Lebreton
et al. (1992). Let us call 
 the set of all the differ-
ent "encounter histories" that have been observed
in a data set. Let q denote the number of encoun-
ter histories, *i (i = 1,…, q) the i–th capture history,
and ni the number of animals with this encounter
history. The *i constitute the q cells of a multinomial
model with individual probabilities �i, where the �i
is the probability of observing the encounter his-
tory *i, conditionally on the time of marking and
first release of the corresponding individuals. The
�i can be expressed as functions of the param-
eters to estimate survival and/or transition prob-
abilities, capture and/or return probabilities, etc.
The likelihood of a model L is proportional to the
product of the �i namely . Estimating the
parameters of the model by the maximum likeli-
hood method will thus consist in finding the val-
ues of the parameters that maximize L.

A model is defined to be identifiable if no two
values of the parameters give the same distribu-

Table 1. The observed m–array for the CJS
model with 3 capture occasion: Ocr.
Occasions of release; Nr. Number
released; FRc. First recapture occasion;
Ri. Number released at occasion i; mij.
Number of first recaptures at occasion j,
given release at occasion i.

Tabla 1. Matriz m observada para el mode-
lo CJS con 3 capturas: Ocr. Lliberaciónes;
Nr. Cantidad de liberados; FRc. Primera
ocasion de recaptura; Ri. Número liberado
en la ocasión i; mij. Número de primeras
recapturas en la ocasión j, cuando la libera-
ción se ha producido en la ocasión i.

       FRc

Ocr Nr 2 3

1 R1 m12 m13

2 R2 m23
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Because &2 and p3 only appear together in the
cell probabilities, the likelihood can be rewrit-
ten in terms of &1, p2 and � = &2 p3 as shown in
table 4.

As a consequence, it has to be borne in mind
that both estimates of &2 and p3 cannot be sepa-
rately discussed, except under the form of their
product, otherwise one will certainly get mislead-
ing conclusions. E.g. for the Dipper data set,
maximum likelihood estimates (MLEs) for &6 and
p7, both equal to 0.728, were obtained both with
software MARK (White & Burnham, 1999) and M–
SURGE (Choquet et al., 2003), resulting in a MLE
for the product equal to 0.53. In fact, infinitely
many other combinations also work e.g. &6 and p7
equal respectively to 0.59 and 0.9. In this particu-
lar case, one should not look for a complex ex-
planation of a decrease in the survival probability
at the end of the study, but rather, consider it as
an artefact due to the redundancy.

Moreover, model selection is often achieved in
capture–recapture studies via the Akaïke informa-
tion criterion (AIC), as recommended by Burnham
& Anderson (1998). This criterion is:

 AIC = –2 log (Lmax) + 2 np

where Lmax is the maximum likelihood, and np is
the number of estimable (functions of) parameters.
To calculate this criterion in the CJS case, one
has to subtract one from the total number of pa-
rameters in order to obtain the number of actually

estimable parameters. Consequently, a naive com-
putation of the number of parameters may lead to
a wrong AIC–ranking of the models.

Determining how many and which functions of
the original parameters are estimable is thus cru-
cial in model selection and in the interpretation of
estimates. Two questions naturally arise, and we
will focus on them in the next section:

Table 2. The m–array of the Dipper data set.
In 1981, 22 birds were released among which,
11 were first recaptured in 1982, 2 in 1983,
and 9 (= 22 – 11 – 2) were never observed
again: Yr. Year of release, Nr. Number
released; YFRr. Year of first recapture.

Tabla 2. Matriz m del conjunto de datos Dipper.
En 1981, se libararon 22 aves de las cuales
11 fueron recapturadas por primera vez en
1982, 2 en 1983 y 9 no sa han vuelto a
observar: Yr. Año de liberación; Nr. Cantidad
liberada; YFRc. Año de la primera recaptura.

YFRc

Yr Nr 1982 1983 1984 1985 1986 1987

1981 22 11 2 0 0 0 0

1982 60 24 1 0 0 0

1983 78 34 2 0 0

1984 80 45 1 2

1985 88 51 0

1986 98 52

Table 3. The m–array cell probabilities for
the CJS model with 3 capture occasions:
Ocr. Occasion of release; Nr. Number
released; FRc. First recapture occasion; &i.
Survival probability between i and i + 1; pj.
Detection probability at occasion j.

Tabla 3a. Probabilidades de la celda de la
matriz m para el modelo CJS con 3 ocasio-
nes de captura: Ocr. Lliberación; Nr. canti-
dad de liberados; FRc. Primera ocasión de
recaptura; &i. Probabilidad de supervivencia
entre i e i + 1; pj. Probabilidad detectada en
la ocasión j.

                         FRc

Ocr Nr 2 3

1 R1 &1 p2 &1 (1 – p2) &2 p3

2 R2 &2 p3

Table 4. The re–parameterization of the m–
array cell probabilities for the CJS model with
3 capture occasions: Ocr. Occasion of
release; Nr. Number released; FRc. First
recapture occasion; &i. Survival probability
between i and i + 1; pj. Detection probability
at occasion j.

Tabla 4. Reparametrización de las probabi-
lidades de las celdas de la matriz m para el
modelo CJS con 3 ocasiones de captura.
Ocr. Liberación; Nr. Cantidad de liberados:
FRc. primera oportunidad de recaptura; &i.
Probabilidad de supervivencia entre i e i + 1;
pj. Probabilidad detectada en la ocasión j.

         FRc

Ocr Nr 2 3

1 R1 &1 p2 &1 (1 – p2) �

2 R2 �
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Question 1 (Q1) – How many parameters are
estimable? This number is called the rank of the
model.

Question 2 (Q2) – Which parameters are esti-
mable?

In the preceding didactic example, the conclu-
sions could have been reached by visual inspec-
tion, trying to find the parameters which appear
only together. However this approach becomes
intractable for complex models.

Additionally, parameter redundancy is not al-
ways intuitive. Indeed the common belief that pa-
rameter redundancy is the result of "too many"
parameters can be completely misleading. A good
example occurs in modelling data from mark–
recovery studies of animals banded at birth. The
so–called Seber model (Seber, 1971) has a fully
age–dependent survival and a constant recovery
probability, with no time dependence in survival
or recovery probabilities. This model is param-
eter redundant, and yet when extra parameters
are added by allowing first–year survival to be
time dependent, the model becomes non redun-
dant (for details see Morgan & Freeman, 1989;
Catchpole et al., 1996).

Another issue arises demonstrating that there
exists no simple "rule of thumb" that allows us to
compute the number of non redundant param-
eters in a model. When constraints are used on
the parameters, the number of non redundant pa-
rameters may depend on the type of link function
that is used. Viallefont (1995) illustrated such a
situation with group dependence (see also Catch-
pole et al., 2002).

What precedes is an inherent model property,
called intrinsic redundancy. Such a situation can
be detected a priori, by methods allowing us to

detect redundancy problems in the structure of a
model, independently for any specific data set. It
could also be detected a posteriori, i.e. after fitting
the model to the data set of interest.

However, there exists a second sort of redun-
dancy, called extrinsic redundancy, due to a par-
ticular structure of the data, usually missing or
sparse data. E.g. it may happen that no individu-
als are detected at time i, inducing the redundancy
of &i–1 and &i, with only the survival probability be-
tween i – 1 and i + 1 being estimable. Such redun-
dancy can only be detected "a posteriori", i.e. when
the model has been fitted to the specific data set
for which the problem appears.

The purpose of this paper is to provide the
reader with the tools available to check for intrin-
sic and extrinsic parameter redundancy and to
choose the most relevant method to solve their
own problems. In the next section, we review the
procedures available for checking for parameter
redundancy,  giving explanations and illustrations.
Four approaches are considered and illustrated
with the CJS model in conjunction with the Dip-
per data. We emphasize relative drawbacks and
advantages and provide recommendations con-
cerning parameter redundancy for the user of
models for marked individuals.

Methods to check for parameter–redundancy

To our knowledge, there exist four different meth-
ods that can be used to detect parameter–redun-
dancy. Table 5 presents these methods according
to their ability to detect a priori intrinsic redun-
dancy, or a posteriori both types of redundancy,
and to answer Q2. The first two methods are more

Table 5. Summary of the conditions of use and relative advantages of the four methods proposed.
For details see the text.

Tabla 5. Resumen de las condiciones de uso y ventajas relativas de los cuatro métodos propuestos.
Para detalles al respecto ver el texto.

Name of                 Detection of              Detection of                Necessary Answer
the method        intrinsic redundancy   extrinsic redundancy           software to Q2

Profile Possible on Yes Any CMR software for No
likelihood simulated data "by hand" plots;

routinely implemented
 in M–SURGE

The Hessian Possible on Yes Implemented in No
simulated data MARK, M–SURGE

Simulation Simulated data No RELEASE (see also MARK) Partial
with large numbers  for computation of expected

released numbers and any CMR software
for the optimization step

The formal Yes Yes MAPLE or MATHEMATICA Yes
derivative matrix
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"intuitive", a posteriori methods, whereas the next
two methods are more appropriate to a priori de-
tect intrinsic redundancy problems.

Profile likelihood

This a posteriori method is based on the fact that
redundancy results in a flat ridge in the likelihood,
hence inducing an infinity of solutions. The redun-
dancy can thus be shown by plotting the profile
likelihood i.e. the likelihood as a function of a
parameter of interest and simultaneously maxi-
mized over the other parameters (e.g. Freeman et
al., 1992; Lebreton & Pradel, 2002).

This method is normally used a posteriori, i.e.
on a given data set with a given model, and more
specifically it is used to detect problems concern-
ing a specific subset of parameters. One needs
first to have an idea of which parameters are re-
dundant. For example, if in two quite close mod-
els, very different estimates are found for one pa-
rameter, this may mean that it is redundant.

This method can also be used a priori on
simulated data to detect intrinsic redundancy, or
to distinguish between extrinsic and intrinsic re-
dundancy problems: indeed, an intrinsic problem
is model–dependent and remains so whatever
the data set used, whereas an extrinsic problem
is due to the structure of a specific data set, and
disappears if a simulated data set with a differ-
ent structure is used.

For the Dipper example, graphs of the profile
deviance are shown in figure 1. Several model–
fitting steps are necessary, with different fixed
values at each time for the parameter under in-
vestigation. Then the different deviance values
are plotted against the corresponding fixed value
of the parameter. If the parameter is estimable
uniquely by maximum likelihood, for example &1,
one will get a higher deviance for any value of
this parameter other than the MLE. On the con-
trary, if the parameter is not estimable, e.g. p7,
one will get a flat ridge according to the direction
of this parameter. Actually, this flat ridge does not
extend completely from 0 to 1. In this example,
because we have to deal with probability, once
the value of p7 has been fixed between 0 and 1,
the value of &6 has to be between � = &6 p7 and 1,
otherwise the deviance is no longer constant, but
as long as the ridge exists in the neighbourhood
of the MLE, the concerned parameter must be
considered redundant. Further detail on the ex-
tent of a ridge in the context of Seber’s mark–
recovery models is given in Catchpole et al. (1993)
and Catchpole & Morgan (1994).

This method can be used "by hand" with any
CMR software, while the program M–SURGE can
automatically give the plot of profile deviance.

Applications can be found in Viallefont (1992),
Freeman & Morgan (1992), Catchpole et al. (1993),
Catchpole & Morgan (1994), Lebreton & Pradel
(2002), Pradel et al. (in prep.) and Gimenez et al.
(submitted).

This method is a graphical diagnostic only of
the model parameter redundancy. It should not be
used systematically, which would necessitate draw-
ing as many graphs as there are parameters in
the model, which would be very time–consuming.

The Hessian

This a posteriori method is based on detecting
zero eigenvalues of the matrix of the second de-
rivatives of the log–likelihood with respect to the
parameters —namely the Hessian matrix— evalu-
ated at the MLE. The model rank is computed as
the number of non–zero eigenvalues (Viallefont et
al., 1998) i.e. the numerical rank of the Hessian
(the number of linearly independent rows). It is
also possible to determine the parameters that
are separately estimable by computing the
eigenvectors associated with the zero eigenvalues
and identifying their null co–ordinates (Reboulet et
al., 1999).

For the Dipper example, the 12 x 12 Hessian
matrix and the associated eigenvalues are given
in table 6. The eigenvalue in bold is close to zero
meaning that the model rank equals 11. Out of the
12 original parameters, only 11 are estimable, con-
firming what is known about the CJS model. In
addition, by considering the entries in the
eigenvector corresponding to the smallest
eigenvalue, it is confirmed that only the last sur-
vival and capture probabilities are redundant pa-
rameters (values in bold).

This method should be used cautiously be-
cause: (1) as with any a posteriori method, it does

Fig. 1. Profile deviance for two parameters
of the CJS model: application to the Dipper
data set.

Fig. 1. Desviación del perfil para dos
parámetros del modelo CJS: aplicación al
conjunto de datos Dipper.
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not distinguish between intrinsic and extrinsic redun-
dancy, thus it does not allow generalisation of the
results found for one specific data set to other data
sets with the same structure mode; (2) it requires the
Hessian matrix, which is often done numerically
through an approximation via a finite difference scheme;
and (3) a perfect tuning of a zero threshold value
probably does not exist (Viallefont et al., 1998).

Moreover, using this method without caution in-
duces another problem when some parameters
are estimated at a boundary value of the param-
eter interval. For example, if one of the survival
probabilities is estimated at the value of one or
zero, the numerical computation of the Hessian by
finite differences may induce one eigenvalue of
this matrix to be null, thus leading to counting the
corresponding parameter as if it was not sepa-
rately estimable, whereas it obviously is (with a
value at a boundary).

Despite all these problems, this numerically
tractable method has been implemented exten-
sively in the mark–recapture software SURGE
(Viallefont et al., 1998; Reboulet et al., 1999), MARK
(White & Burnham, 1999) and M–SURGE (Choquet
et al., 2003). We advise the reader to be very
careful when using MARK, where a wrong compu-
tation of the number of independent parameters in
the models can lead to an unreliable ordering of
the models via AIC. When using M–SURGE, the
first derivatives are analytically computed which
improves the precision.

Simulation

The first step of the simulation method (also called
the analytical–numerical method) generates an
artificial data set, by assuming a (realistic) set of
parameter values and (large) ringing numbers,

Table 6. Numerical diagnostics for CJS model parameter redundancy with the Dipper data set.

Tabla 6. Diagnósticos numéricos para la redundancia de parámetros en el modelo CJS con el
conjunto de datos Dipper.

Hessian matrix computed by a finite difference scheme

2.524   0.779 0.027 0.001 0.000 0.000 1.343 0.055 0.002 0.000 0.000 0.000

0.779 14.478 0.495 0.019 0.001 0.000 –0.542 1.022 0.031 0.002 0.000 0.000

0.027 0.495 18.485 0.716 0.046 0.001 –0.019 –0.468 1.166 0.075 0.004 0.001

0.001 0.019 0.716 17.067 1.100 0.028 –0.001 –0.018 –0.662 1.790 0.084 0.028

0.000 0.001 0.046 1.100 20.076 0.503 –0.000 –0.001 –0.043 –1.017 1.528 0.503

0.000 0.000 0.001 0.028 0.503 8.325 –0.000 –0.000 –0.001 –0.025 –0.485   8.325

1.343 –0.542 –0.019 –0.001 –0.000 –0.000 2.407 –0.038 –0.001 –0.000 –0.000 –0.000

0.055 1.022 –0.468 –0.018 –0.001 –0.000 –0.038    1.035 –0.029 –0.002 –0.000  –0.000

0.002 0.031 1.166 –0.662 –0.043 –0.001 –0.001 –0.029 1.965 –0.069 –0.003 –0.001

0.000 0.002 0.075 1.790 –1.017 –0.025 –0.000 –0.002 –0.069 3.008 –0.077 –0.025

0.000 0.000 0.004 0.084 1.528 –0.485 –0.000 –0.000 –0.003 –0.077 2.042 –0.485

0.000 0.000 0.001 0.028 0.503 8.325 –0.000 –0.000 –0.001 –0.025 –0.485   8.325

Hessian eigenvalues    Eigenvector associated with the null eigenvalue

  0.00000364 –3.484365e–18 &1

  0.94321127   1.371273e–16 &2

  1.05686038 –8.138873e–17 &3

  1.85022632   2.486811e–17 &4

  1.87616909   6.028106e–17 &5

  2.70801343 –7.071068e–01 &6

  3.80631847   8.958153e–19 p2

14.56896925 –1.775061e–15 p3

16.52430693   2.851347e–16 p4

16.87618746   2.764039e–16 p5

18.83059874   5.154638e–17 p6

20.69498495   7.071068e–01 p7
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and then using the model to generate expected
encounter histories. In a second step, this gener-
ated data set is analyzed with the model of inter-
est using standard software such as MARK, M–
SURGE, SURVIV (White, 1982) or MSSURVIV
(Hines, 1994). For large numbers of released in-
dividuals per occasion, the MLEs and standard
errors produced are approximately the expected
values of the parameter estimators and their stand-
ard errors. If a parameter estimator is unbiased to
the 5th decimal place and has a coefficient of vari-
ation less than 100%, then it is declared estima-
ble (Kendall & Nichols, 2002).

For the CJS model example for the Dipper
study, we used Ri = 10,000 for all i and parameter
values shown in table 7. The resulting expected
m–array values are given in table 7. Using SURVIV
e.g., we analyze these data fitting the CJS model.
The results in table 8 suggest that all param-
eters are estimable except for &6 (biased esti-
mate) and p7 (biased estimate and large coeffi-
cient of variation).

Recent applications can be found in Schaub et
al. (2004) and Kendall & Nichols (2002).

This method can be used as a completely a
priori method, to investigate the intrinsic redun-
dancy of a model, by generating the simulated
data set with arbitrarily fixed values of the model
parameters. Note however that the ringing num-
bers used in the simulation should be large
enough to ensure that there are no zero cells in
the m–array, to ensure that any redundancy found
must be intrinsic. However, it is also often used
a posteriori, using the point estimates obtained
to generate the simulated data. The investiga-
tion of the extrinsic problems of redundancy (i.e.
due to the data) cannot be assessed by this
method, because it relies on the data set being

very large, which requires simulated rather than
actual data.

Also, the simulation method is only valid for the
particular values of the parameter that are chosen

Table 7. Expected m–array using Ri = 10,000 for all i and the parameter values &1 = 0.4; &2 = 0.5;
&3 = 0.6; &4 = 0.6; &5 = 0.7; &6 = 0.7; p2 = 0.9; p3 = 0.9; p4 = 0.9; p5 = 0.9; p7 = 0.7. Values are rounded
to the nearest integer: YFRc. Year of first recapture; Yr. Year of release; Nr. Number released.

Tabla 7. Matriz m esperada utilizando Ri = 10.000 para todos los i y los valores paramétricos &1 =
0,4; &2 = 0,5; &3 = 0,6; &4 = 0,6; &5 = 0,7; &6 = 0,7; p2 = 0,9; p3 = 0,9; p4 = 0,9; p5 = 0,9; p7 = 0,7. Los
valores se redondean al número entero más próximo: YFRc. Año de la primera recaptura; Yr. Año
de liberación; Nr. Cantidad liberada.

             YFRc

  Yr Nr 1982 1983 1984 1985 1986 1987

1981 10,000 4,900 756 38 2 1 1

1982 10,000 3,600 180 11 1 1

1983 10,000 4,500 270 16 1

1984 10,000 5,400 324 29

1985 10,000 5,400 480

1986 10,000 8,000

Table 8. MLEs obtained from the simulated
data of table 6: P. parameters; MLEs.
Maximum likelihood values; SE. Standard
error; B. Bias; Cv. Coefficient of variation (%).

Tabla 8. MLE obtenidos a partir de los datos
simulados de la tabla 6: P. Parametros; MLEs.
Valores de probabilidad máxima; SE. Error
estandar; B. Desviación; Cv. Coeficiente de
variación (%).

P     MLEs   SE          B     Cv

&1 0.700 0.078 0 0.11

&2 0.400 0.070 –0.00001 0.17

&3 0.500 0.072 –0.00000 0.14

&4 0.600 0.071 –0.00000 0.12

&5 0.600 0.070 –0.00000 0.12

&6 0.894 0.067 0.19442 0.07

p2 0.700 0.092 0.00000 0.13

p3 0.900 0.080 0.00002 0.09

p4 0.900 0.073 0.00002 0.08

p5 0.900 0.070 0.00001 0.08

p6 0.900 0.065 0.00001 0.07

p7 0.894 225.184 0.19442 251.76
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to compute the expected probabilities. We recom-
mend using several set of different values to be
sure that you do not have to deal with a very par-
ticular case (a model conditionally of full rank i.e. a
model of full rank, but parameter redundant for
one or several values of the parameters). For the
Dipper example, we tried several sets of different
values for the parameters and were led to the
same conclusions.

Given that the variances computed by SURVIV
should not be trusted when one or several param-
eters are redundant in the model (Hines, pers.
com.), we greatly encourage using MARK or M–
SURGE which are more reliable in computing the
Hessian matrix. Of course, generating all possi-
ble encounter histories for a large fixed number
of capture occasions, and then writing down their
expected values under a complex model, can
quickly become time–consuming and often in-
tractable. Note however that simulations of the
CJS model can be conducted with program RE-
LEASE which can be used as a standalone ap-
plication (Burnham et al., 1987) or found as part
of program MARK.

Finally, it is important to notice that this method
also allows us to study relevant statistical quanti-
ties, such as bias, precision of estimators, or power
of likelihood–ratio and goodness–of–fit tests
(Viallefont et al., 1995; Pollock et al., 1985).

The formal derivative matrix

This a priori method is based on the analytical
computation of the matrix D of derivatives of the
vector of the multinomial distribution cell prob-
abilities with respect to the vector of model pa-
rameters. This method gives the answer to both
Q1: the number of estimable parameters is the
symbolic row rank of D, and Q2: the estimable
(functions of) parameters are the formal solu-
tions of a system of partial differential equations
(PDEs). The successive steps required to per-
form this method are shown in table 9 and will
now be detailed using the CJS model example
in conjunction with the Dipper data set. Sym-
bolic calculus software such as Maple or
Mathematica can be used at each step to greatly
ease the mathematical burden.

Intrinsic parameter–redundancy

The first step requires forming the vector q of origi-
nal parameters and a vector m of m–array cell
probabilities under the CJS model. In both vectors
the order is arbitrary. We choose

� = (&1,...,&6, p2,...,p7)
T

and   m = (&1p2,&1(1 – p2)&2p3,...,&6p7)Τ

Table 9. Different steps required to perform the formal method.

Tabla 9. Distintos pasos requeridos para ejecutar el método formal.

Steps Mathematical objects and notation

1. Write down the vector of log–probabilities Vector of parameters:
    as a function of parameters

Vector of log–probabilities:

2. Differentiate formally log ((µ(�)) The derivative matrix:
    wrt the components of �

3. Determine the number q of estimable Symbolic rank of the derivative matrix:
   parameters: if q < p the model is parameter r = rank (D)
   redundant then go to step 4, otherwise
   the model is of full rank

4. Write down formal solutions of: �i (θ)T D(θ) = 0,       i = 1,...,d

5. Determine position i1,...,is of 0 The s separately non–redundant parameters:
   in common to all �s

6. Write down the system of partial The system of PDEs:
   differential equations and solve it formally
   to obtain the estimable functions     j = 1,...,d
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Then, step 2, we calculate the symbolic derivative
matrix D of log(�) with respect to q. The result is:

Then the answer to Q1 (step 3) is simply the sym-
bolic rank of D which can be easily obtained, again
with Maple or Mathematica. For the CJS model, we
find a deficiency of 1 i.e. a rank equal to 11. The
eigenvector corresponding to the zero eigenvalues
is (step 4)

Since this (sole) eigenvector has zeroes in all
entries except those corresponding to &6 and p7,
all parameters except those two are estimable
step 5). To determine the full set of estimable func-
tions, step 6 requires the solution of the following
partial differential equation (PDE):

The solutions of this PDE are &1, &2, &3, &4, &5
and p2, p3, p4, p5, p6 and the product &6 p7.

Extrinsic parameter–redundancy

What precedes deals only with inherent properties
of the CJS model. If the behaviour of parameter

estimates is needed, one has to take the data into
account. By considering non–structural zeroes i.e.
missing data in the m–array, it is easy to adjust
the method for checking for extrinsic parameter
redundancy. One has just to modify step 1 by form-
ing a vector m of m–array cell probabilities incor-
porating only the probabilities corresponding to
non–zero mij (cell probabilities corresponding to
zero mij do not play any role in building the likeli-
hood, since they are raised to the power zero).

With the Dipper data set, there is a substantial
amount of missing data, so that only 11 cells do
not contain missing data (see table 2); m12, m13,
m23, m24, m34, m35, m45, m46, m47, m56 and m67. The
expression of the derivative matrix D is simpler,
consisting of just 11 of the columns of the previous
D, but its rank still remains equal to 11 so that in
this case the missing data do not render any extra
parameters redundant.

Recent applications can be found in Schaub et
al. (2004). Other examples with more details about
the theory and references can be found for single–
state models in Catchpole et al. (2002) with asso-
ciated Maple code freely available from http://
www.ma.adfa.edu.au/~eac/Redundancy/Maple and

where  = 1 – pj, j = 2,...,7

http://www.ma.adfa.edu.au/~eac/Redundancy/Maple
http://www.ma.adfa.edu.au/~eac/Redundancy/Maple
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for multistate capture–recapture models in Gimenez
et al. (2003), for which Maple code is freely avail-
able from ftp://ftp.cefe.cnrs–mop.fr/bio/PRM.

Discussion

The four methods all give some information about
the redundant parameters in a particular model or
for the case when that model is fitted to a specific
data set. They should be used in preference to any
"rules of thumb". If, using one of these methods,
the number of non–redundant parameters in a
model is known with certainty, then information cri-
teria can safely be computed. Otherwise, it is advis-
able to use the value automatically computed with
the Hessian method by software such as MARK or
M–SURGE. It has to be noted that the intrinsic
number of non–redundant parameters is known for
many models (Lebreton et al., 1992 for CJS–type
models; Gimenez et al., 2003 for multistate mod-
els; see also Viallefont, 1995; Kendall & Nichols,
2002; Schaub et al., 2004). Hence, if the Hessian
method yields different results, the structure of the
data has to be checked to determine whether ex-
trinsic reasons induce redundancy.

Another easy way to count the number of non–
redundant parameters is the simulation method.
But, both the Hessian and simulation methods
may be flawed by numerical issues, such as de-
ciding what "close to zero" means. There is a
slight advantage of the simulation method as it
does give an immediate answer to the question:
"Which parameters are not separately estimable?"
(e.g. &6 and p7 in the CJS model with the Dipper
example). Concerning the Hessian method, the
variance of the redundant parameters is not al-
ways very different from that of the separately esti-
mable parameters, and some insight in the
eigenvectors is thus required.

Knowing which parameters are not separately
estimable only constitutes a partial answer to Q2 in
the introduction of this paper. In the Dipper exam-
ple, only the formal method yields the information
that the product &6 p7 is estimable, rather than any
other function of these two parameters. Hence, only
the formal method gives the full answer to Q2.

To make efficient use of the profile–likelihood
method, one needs to have an idea about which
parameters might be redundant, in other words,
one should have an idea of the "partial answer" to
Q2. The profile–likelihood is then an easy–to–use
method, but the results only apply to the param-
eters for which the profile–likelihood plot has been
drawn. To obtain a complete answer to Q1 with
this method, one needs to plot the profile–likeli-
hood for all the parameters, which will be very
time–consuming in many cases.

Even if a model is non–redundant, difficulties in
estimation can occur because of local minima
(Lebreton & Pradel, 2002) or duality phenomena
(Pradel et al., in prep.) when two different esti-
mates of the same parameters can give the same

value of the smallest deviance (this is a case of
non–identifiability). In such cases, a graph of the
profile–deviance can add valuable information.

While building the profile deviance for a param-
eter, it is also quite easy to derive at the same
time profile–deviance–based confidence intervals
which are known to be more robust than the clas-
sical Wald confidence interval with boundary esti-
mates (Catchpole & Morgan, 1994 for mark–recov-
ery models; Gimenez et al., submitted for multistate
mark–recapture models).

To know a priori the intrinsic number of estima-
ble parameters in a model, all four methods pro-
posed here may be used on simulated data for the
profile–likelihood, the Hessian or the analytical–
numerical methods: it is then advisable to generate
two or more data sets to check that the result is not
due to a special case in the simulated data.

The formal method that does not require any simu-
lated or expected data is not only more reliable, but
also the only one to provide a clear answer to Q2.

Moreover, having worked out a particular case
(e.g. CJS with 3 capture occasions) it is often
possible to extend the conclusions to larger ex-
amples with the same structure (i.e. more years of
data) without having to repeat the analysis (e.g.
Catchpole & Morgan, 1997, 2001; Gimenez et al.,
2003). We are currently trying to extend these ideas
in order to provide a taxonomy of intrinsic redun-
dancy of many standard models.

We thus advise anyone wanting to develop new
models for the analysis of marked data to use the
formal method to assess the properties of the new
model they develop.

Clearly, it requires the use of specific software
and some knowledge of algebra. We hope to see
an automatic implementation in standard CMR
software in the near future. Pending this progress,
we anticipate that in the near future, combining
the formal method with other methods will be
important. It could be the way to go towards a
reliable routine computation of numbers of esti-
mable parameters. Such an approach is adapted
in program M–SURGE where the first derivatives
are analytically computed. A second example is
given by Choquet & Pradel (unpublished results).
They developed practical rules in order to sim-
plify the structure of derivative matrix D which
makes calculation of the formal rank easier.

From a Bayesian perspective, maximum likeli-
hood theory is equivalent to finding the mode of
the joint posterior distribution of the parameters,
given uniform priors. Since Bayesians usually ex-
amine posterior means, rather than modes, is-
sues of parameter redundancy are not apparent,
and might well be thought to be of no importance.
If there is parameter–redundancy, then the likeli-
hood surface is flat, however if a Bayesian ap-
proach is adopted, then the posterior can result in
remarkably precise estimators. This is investigated
and explained in Brooks et al. (2000) for a particu-
lar example. In their case, Brooks et al. were aware
that the ridge existed, but one could envisage ex-

ftp://ftp.cefe.cnrs�mop.fr/bio/PRM.
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amples arising when that was not the case. It is
therefore important to be aware of parameter re-
dundancy. Barry et al. (2000) found that the exist-
ence of parameter redundancy can have substan-
tial impact on posterior means and standard de-
viations. Carlin & Louis (1996, p. 203) recommend
against the use of Markov chain Monte Carlo meth-
ods in the presence of parameter redundancy.

Knowing that a model is full–rank may not be
enough. This has been shown by Catchpole et al.
(2001). It is shown there that if a full–rank model
has a parameter–redundant sub–model, and is
insufficiently different from that submodel, then it
may perform badly in practice. Thus in practice
one should think carefully about the models to be
used, and make use of whatever knowledge and
general results that are available (see, eg., Catch-
pole et al., 1996). Even though a model may be
full–rank, it can still be useful to check the values
of the eigenvalues. This then produces a kind of
synthesis of intrinsic and extrinsic procedures.

As a conclusion, the choice between methods
clearly depends on the purpose of the study. As
the tools presented here are enough to tackle all
sorts of problems concerning parameter redun-
dancy, we do hope that people will use them, in
order to ensure valid biological conclusions.
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