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Summary

1. Two-level data, in which level-1 units or individuals are nested within level-2 units or clusters, are very com-

mon in natural populations. However, very few multilevel analyses are conducted for data with imperfect detec-

tion of individuals.Multilevel analyses are important to quantify the variability at each level of the data.

2. In this study, we present two-level analyses for estimating demographic parameters from data with imperfect

detection of individuals and with a source of individual variability that is nested within a source of cluster vari-

ability.

3. This method allows separating and quantifying the phenotypic plasticity or facultative behavioural responses

from the evolutionary responses. We illustrate our approach using data from studies of a long-lived perennially

monogamous seabird, the Cory’s shearwater (Calonectris diomedea) and a patchy population of collared fly-

catchers (Ficedula albicollis).

4. Wedemonstrate the existence of dependence in recapture probability between paired individuals in the Cory’s

shearwater. In addition, we show that family structure has no influence on parent–offspring resemblance in col-

lared flycatchers dispersal.

5. The newmethod is implemented in program E-SURGEwhich is freely available from the internet.

Key-words: capture–recapture, dispersal, heterogeneity, within-group variance, mixed models,

pairs, siblings

Introduction

Demographic parameters are key population dynamics com-

ponents to address important questions in ecology, manage-

ment and evolution. For example, estimation of survival and

dispersal often involves a capture–recapture (CR) protocol in

which individuals are captured, marked, and released in their

environment. CR models allow inferring demographic pro-

cesses in spite of the practical impossibility to detect all individ-

uals in a natural population at each sampling session.

However, most CR studies rely on the assumption of indepen-

dence between individuals, hence ignoring the natural associa-

tions among individual fates. For example, each individual

may belong to a cluster of individuals (i.e. a subset of individu-

als that remains the same across time) such as a family, a set of

young born the same year with the same mother or a set of

individuals occupying the same geographical location. In these

situations, two individuals belonging to the same cluster may

have more similar parameter values than two individuals from

different clusters.

If individual characteristics such as phenotype, cluster char-

acteristics or habitat quality are measured in the field, it is rela-

tively easy to incorporate these sources of variation in CR

models, using covariates. However, there are many situations

in which the information at the individual or the cluster level

cannot bemeasured, for examplewhen individuals are not cap-

tured physically. Importantly, ignoring heterogeneity arising

from individuals or clusters of individuals may induce biases in

parameter estimates (Barry et al. 2003). This leads to the detec-

tion of an effect more often than it should (i.e. an inflated type I

error rate) (Lin 1997). From a biological perspective, ignoring

this heterogeneity may lead to flawed inference in conservation

biology (Cubaynes et al. 2010) and evolutionary ecology (Cam

et al. 2002; P�eron et al. 2010). These data sets can be statisti-

cally modelled using a multilevel analysis, taking into account

sources of variation in the cluster-level process that generates

the dependence.*Correspondence author. E-mail: remi.choquet@cefe.cnrs.fr
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Recent studies have focused on accounting for the variation

in demographic parameters at the level of either the individual

(Royle 2008; Gimenez & Choquet 2010) or the cluster of indi-

viduals (Choquet&Gimenez 2012).However, studies account-

ing for both levels simultaneously are lacking. Nevertheless,

modelling for dependence between individuals within clusters

is crucial to quantify inter- and intra-individual variation in

demographic parameters (Doran et al. 2007; van de Pol &

Wright 2009) and thus to address relevant questions in evolu-

tionary ecology (Doligez et al. 2012) and behavioural ecology

(Cohas et al. 2007). Of particular importance is the assessment

of the proportion of phenotypic variation that can be attrib-

uted to between-subject variation, versus the proportion due to

measurement error and phenotype flexibility. This so-called

intra-class coefficient (ICC) has many applications (Nakagawa

& Schielzeth 2010). For example, ICC has been used to quan-

tify the resemblance in time series of demographic parameters

between populations (Grosbois et al. 2009) or species (Lahoz-

Monfort et al. 2009).

The simplest and most common form of data structure is

two-level data, in which ‘level-1 units’ are nested within ‘level-2

units’. Some typical examples of this scheme include measure-

ments nested within subjects (in the case of longitudinal data)

and individuals nested within families. In both cases, relation-

ships between level-1 and level-2 units frequently exist and are

worthy of research, for example those existing between pairs

(Schmutz et al. 1995; Schwarz 2002) or those arising from

within-family resemblance (i.e. between parents and offspring

or between siblings) in dispersal (Massot & Clobert 2000;

Doligez et al. 2012).

In medicine, social and agricultural sciences data arise from

an exhaustive monitoring of individuals. Currently there exist

several models and tools that use random effects to account for

dependence, at both the level of the individual and the cluster.

All of which are well spread among practitioners (Diez-Roux

2000; Gelman & Hill 2006). Mixed models accommodating

two levels or more of hierarchical data are available in popular

statistical programs such as SASwith its procedureNLMIXED,

or R with its packages LME4 and NLME (Pinheiro & Bates

2000; Bates & Sarkar 2007). However, this category of models

has not yet been fully developed in population biology. Data

here often originate from a nonexhaustive monitoring of indi-

viduals, resulting in complex likelihoods that are very time con-

suming to calculate. Recently Choquet & Gimenez (2012)

considered the full dependence of individuals belonging to the

same cluster in CR studies. However, this preliminary work

did not consider two-level analyses and therefore was unable

to compute the ICC.

Here, we generalize this work by allowing flexibility in the

dependence between individuals of a cluster. We develop ran-

dom-effects models to accommodate data hierarchy with two

levels: subjects nested within clusters. Our new approach is illus-

trated using two case studies. First, we consider the dependence

of fates (survival and recapture) between members of pairs in a

long-lived perennially monogamous seabird, the Cory’s shear-

water (Calonectris diomedea). Secondly, we investigate the

influence of family structure on parent–offspring resemblance

in dispersal in a patchy population of collared flycatchers (Fice-

dula albicollis). These models are implemented in the software

application E-SURGE (Choquet, Rouan & Pradel 2009) within a

frequentist approach using numerical integration.

Probabilistic framework formodelling
capture–recapture

Assume we have K capture occasions and N individuals. Let

the encounter history for individual i of cluster j be hij = (oij1,

…, oijk), where oijk denotes whether individual i of cluster j is

observed in state m (oijk = m) or not (oijk = 0) at time k. We

consider three sets of parameters usually used in multistate CR

models (see Lebreton et al. (2009) for a review) which include:

●Survival probabilities st,m: The probability for an individual

to survive being in statem at time t from occasion t to occasion

t + 1.

●Transition probabilities wt,mn: The probability for an animal

being in state m at time t to be in state n at time t + 1 condi-

tional on being alive at time t.

●Recapture probabilities pt,n: The probability for an animal to

be recaptured at occasion t in state n.

This model, in which survival, transition and recapture

probabilities are state- and time-dependent, corresponds to the

Arnason–Schwarz model [AS, Arnason (1973); Schwarz,

Schweigert & Arnason (1993)] and is denoted Sf.t Ψf.to.t Pto.t

where ‘f’ and ‘to’ are notation for, respectively, state of depar-

ture and state of arrival and ‘t’ denotes dependence upon time

[see Choquet (2008) for further details on notation]. When

there is only one state, then there is no transition and the AS

model reduces to the so-called Cormack-Jolly-Seber [CJS,

Lebreton et al. (1992)] model denoted StPt.

Modelling dependence in a cluster of individuals

Individuals of distinct clusters are assumed independent

whereas individuals of the same cluster are not. We consider a

parameter h(ij) (for survival, transition or recapture probabil-

ity) for the i-th individual of cluster j. For the sake of simplicity,

we remove the index for time. We assume also that the size of

clusters is constant and equal to NI. The model for the

response (on the logistic scale) of the i-th individual to the j-th

cluster is as follows:

logitðhðijÞÞ ¼
XL
l¼0

blXlij þ bijZ eqn 1

where each vector bj = (b1j, …, bNIj)
′ is a vector of independent

and identically distributed (i.i.d.) random effects following a

multivariate normal distribution N(0,Σ), where Σ is the vari-

ance–covariance matrix associated with the design matrix Ζ,
and bl is a fixed effect associated with the designmatrixXlij. The

fixed effects in X may take different values for individuals and

clusters. That is, one may make use of variables that describe

the individual (‘level-1 variables’) or the cluster (‘level-2 vari-

ables’) or both. For illustration, we consider three biological sit-

uations in which parameter h is successively survival probability
(s), transition probability (w) and recapture probability (p).
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Example 1 – Modelling survival probability in the CJS

model: We consider pairs (level 2) in which males and females

are individuals of the level 1. To quantify between-pair varia-

tion in survival, we consider the followingmodel:

logitðsðijÞÞ ¼ b0 þ bj eqn 2

where b0 is the mean survival on the logit scale and the bj’s are

i.i.d. distributed as a univariate normal distribution N(0,r2)

wherer2 is the variance within the pairs.

Example 2 – Modelling recapture probability in the CJS

model: As in example 1, we consider pairs. To quantify the var-

iability of the recapture between pairs and the proportion of

total variation explained by between-pair variation, we con-

sider the followingmodel:

logitðpðijÞÞ ¼ b0 þ bij eqn 3

where bj = (b1j, b2j)
′ is i.i.d. as a bivariate normal N(0,Σ) with

R ¼ r2 qr2

qr2 r2

� �
and b0 is the intercept. Parameter q is the

correlation between two individuals. Here, r2 is the total vari-

ance and when positive qr2 is the within-group variance. In

that particular case where q is positive, q is the ICC and has a

direct biological interpretation (see above).

Example 3 – Modelling transition (conditional on being

alive) probability in the AS model: We consider families (level

2) in which all members are exchangeable (i.e. all individuals

behave the same concerning the transition). We consider the

transition probabilities between two states, ‘ND: non dispers-

ers’ and ‘D: dispersers’. We evaluate the between-family

variability in transition between states 2 and 1 usingmodel:

logitðwD!NDðijÞÞ ¼ b2 þ bj

where bj’s are i.i.d. following a univariate normal distribution

N(0,r2) and b2 is the intercept for the transition from state D

toND.

To describe a mixed model in E-SURGE, we use a general syn-

tax of the form ‘phrase1 + phrase2’ where phrase1 is any

phrase for fixed effects and phrase2 (in italics) is any phrase for

random effects. The phrase ‘i+pairs’ models Eqn 2, where i is

the intercept. The phrase ‘i+sex/pairs’ models Eqn 3, where a/b

means a nested in b. In that case, the standard deviation (r) is
assumed constant.

Structure of the variance–covariancematrix

The set of covariancematrices that we can consider can be con-

veniently described by first decomposing

R ¼ CPC eqn 4

with Γ the diagonal matrix of the standard deviations and P

the matrix of correlations. For a matrix of dimension 2 9 2

associated with a cluster of size two, P ¼ 1 q
q 1

� �
. For q = 0

and constant standard deviations, example 2 reduces to an

individual random effect where all individuals are independent

(Gimenez & Choquet 2010). For q = 1, this random effect

reduces to a random effect where individuals are fully depen-

dent (Choquet & Gimenez 2012). For a variance–covariance

matrix

R ¼ r2 qr2

qr2 r2

� �
;

q captures the relative importance of the between-cluster

variance ðr2bÞand the within-cluster variance ðr2wÞ. For a posi-

tive correlation, q is the ICC and there is a direct relationship

between q; r2b and r2w, which is q ¼ r2w
r2
b
þr2w

Several structures for matrices Γ and P are possible

(Table 1), the choice of which depends on the problem under

consideration (Wolfinger 1996). Sub-table 1A shows two pos-

sible structures for standard deviations, either constant

(HOM) or level dependent (HET). Sub-table 1B shows two

possible structures for correlation between individuals nested

within a cluster. The first one (CS) considers a constant corre-

lation, whereas the second one (UN) considers the full parame-

terization of correlation. The order of the variance–covariance

matrix is the size of the cluster, which can be large. The order

of Σ can be reduced when the correlation q is assumed to be

positive and when both variances and correlations are con-

stant.When the size of the cluster is large, it is convenient from

a computational perspective (see above) to consider instead the

addition of two random effects, one for the individual (level 1)

and the other for the cluster (level 2), which leads to the follow-

ing variance–covariancematrix:

R ¼ r2b þ r2w r2w
r2w r2b þ r2w

� �
:

Parameter estimation

Assuming that individuals are independent conditional on the

random effects, the likelihood for fixed effects for the entire set

of encounter histories is obtained as the product of the proba-

bility P(hij|b,b) for the history hij of individual i in cluster j. The

marginal likelihood is obtained by integrating the product of

the probability P(hij|b,b) with respect to the distribution of the

random effects. For i.i.d. random effects on clusters, calculat-

ing the marginal likelihood can be made much more efficient

from a computational perspective by reducing the dimension

of the integral to the order n of Σ applied to the cluster. This

integral is one-dimensional in examples 1 and 3 and bi-dimen-

sional in example 2. The marginal likelihood of the CR mixed

model becomes:

YJ
j¼1

Z
Rn

Y
i2Ij

Pðhijjb; b; xÞfðxjRÞdx eqn 5

where J is the number of clusters and Ij is the set of individuals

of cluster j, f(x|Σ) is the density function of a N(0,Σ) with Σ of

order n, which is lower or equal to the size of the cluster and

may be constant between clusters or not. For an individual or

a group random effect, n is equal to 1.

The marginal likelihood involves integrals that cannot be

evaluated analytically due to the complexity of the CR model
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likelihood. We use the Gauss-Hermite quadrature [GHQ, Liu

& Pierce (1994)] which is known to work well for a large class

of problems, at least for low-dimensional integrals and a

Gaussian distribution for the random effects. We obtain maxi-

mum likelihood estimates (MLEs) of the model parameters by

maximizing the marginal likelihood using a quasi-Newton

algorithm. Approximate standard errors (SEs) are obtained

from the inverse of the Hessian calculated from a standard

finite-difference scheme.We used aGHQof order 8 up to order

15 (Gimenez&Choquet 2010; Choquet &Gimenez 2012).

Testing hypotheses about variance–covariance
components

As argued before, testing for dependence is crucial for biolo-

gists. However, in equation (2), there is an issue to safely carry

out a likelihood ratio test (LRT) for testing whether the

variance differs from 0 or the cluster correlation differs from 1

(to test whether there is an individual effect) or the cluster cor-

relation differs from -1. This issue arises due to the boundary

conditions required to apply the LRT. In a standard approach,

the LRT statistic follows a chi-square distribution with one

degree of freedom. The test can then be performed if the cluster

correlation is equal to 1, but at the risk of rejecting the null

hypothesis too often. Fortunately, because a correlation is con-

strainedwithin the interval (-1, 1), testing whether a correlation

differs from 1 is essentially asking whether this correlation is

significantly lower than 1. This can be accomplished by testing

the observed chi-square against a chi-square distribution

that is an equal mix of a chi-square distribution with one

degree of freedom and another one with zero degree of free-

dom [e.g. Self & Liang (1987)]. In practice, this means that one

needs to perform a one-sided test, in other words to half the

P-value obtained by using the standard chi-square distribution

with one degree of freedom. Note that a similar reasoning

holds when testing whether variance components differ from

Table 1. Main used diagonal variance matricesΣ (Part A) and symmetric correlation matrices Γ (Part B and C, upper part only). Structures of Part

A and B are implemented in E-SURGE. Part A shows two possible structures for standard deviations, either constant (HOM) or level dependent

(HET). Part B shows two possible structures for correlation between individuals nested within a cluster. Structure CS considers a constant correla-

tion, whereas structureUNconsiders the full parameterization of correlation. Structures described in Part C are used for spatial and time correlation.

TOEP may be used for spatial analysis. A distance structure can be taken into account by applying an exponent to the correlation. The exponent

may depend on the number of lags between two observations (second row) or it may be real for a distance (third row: dij is the distance between site i

and site j)

Part A: Standard deviationmatrices

HOM:
r 0 0 0

r 0 0
r 0

r

2
664

3
775

HET:

r1 0 0 0
r2 0 0

r3 0
r4

2
664

3
775

Part B: Correlationmatrices used for individual nested inside a cluster

1 0 0 0
1 0 0

1 0
1

2
664

3
775 CS:

1 q q q
1 q q

1 q
1

2
664

3
775 UN:

1 q12 q13 q14
1 q23 q24

1 q34
1

2
664

3
775

Part C: Specific correlationmatrices related to time series or spatial structure

TOEP(2):

1 q1 0 0
1 q1 0

1 q1
1

2
664

3
775

1 qd121 0 0
1 qd231 0

1 qd341

1

2
664

3
775

1 q q2 q3

1 q q2

1 q
1

2
664

3
775

1 qd12 qd13 qd14

1 qd23 qd24

1 qd34

1

2
664

3
775

TOEP:

1 q1 q2 q3
1 q1 q2

1 q1
1

2
664

3
775

1 q1 q22 q33
1 q1 q22

1 q1
1

2
664

3
775

1 qd121 qd132 qd143

1 qd231 qd242

1 qd341

1

2
664

3
775

1 q1 q1q2 q1q2q3
1 q2 q2q3

1 q3
1

2
664

3
775

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 4, 474–482

Capture-recapture analyses including clusters of individuals 477



zero in equation (2). We refer to Self & Liang (1987) for more

complex situations.

Applications

We illustrated the above method by addressing two questions

about the influence of behaviour on recapture probability

(illustration 1) and the estimation of the heritability of a trait

via transition probability (illustration 2) using capture–

recapture data. In the two examples, we performed model

selection in two steps. First, we carried out ‘standard’ model

selection to determine which fixed effects should be kept using

the Akaike Information Criterion, corrected for small sample

size (AICc) and if any, presence of overdispersion (QAICc).

Then we performed an LRT test for the random effect(s) on

the best fixed-effect model at the 5% significance level. The

biological relevance and context of themodels is partly detailed

in Appendices S1 and S2 as a complement for illustrations 1

and 2 respectively (see Supporting Information).

I LLUSTRATION 1

We investigated the dependence of fates (local survival and

recapture probabilities) between members of pairs in a long-

lived perennially monogamous seabird (Calonectris diomedea),

using a pair random effect. The data used here were collected

between 2001 and 2008 on a medium-size breeding colony of

Cory’s shearwater (ca. 200 pairs) on the small island of Panta-

leu (2�5 ha, 26 m a.s.l.) in the Balearic Archipelago (39º34′ N,

2º21′ E, Spain). Breeding adults were captured on their nests

while incubating and marked with individually numbered

rings. Individual sex was assigned from morphometric mea-

surements. We considered the observations (captures/recap-

tures) of individuals from their first capture together with their

mate, and each pair received a different code. Data on individ-

uals pairing withwidowed or divorced individuals from the ini-

tial pairs were discarded and a total of 140 pairs were therefore

considered. Consequently, the data set includes two levels, the

individual level (characterized by sexwithin a pair) and the pair

level. Goodness-of-fit tests (GOF) for the CJS model (Pollock,

Hines & Nichols 1985) were carried out using program U-CARE

(Choquet et al. 2009). No overdispersion was detected and the

CJS model was retained as the general model under which we

explored the fixed-effect structure. Models in which survival,

recapture or both were constant (denoted i) or time-dependent

(denoted t) were tested, and models including the random

effects (pair and sex nested within pair or not) were secondly

tested against these fixed-effects models (Table 2).

Including an individual (model 6, Table 2, sex.pair) or a pair

random effect (models 5 and 7, Table 2, pair and sex/pair) on

local survival only slightly improved the deviance of the model

compared with the constant survival model. For survival, the

assumption H0: r = 0 could not be rejected (P-value = 0�15).
Therefore, the results suggested that the survival probabilities

of individuals associated in pairs are independent in this species.

Including an individual (model 3, Table 2, t+sex.pair) or a
pair random effect (models 1 and 2, Table 2, t+pair and t+sex/

pair) on recapture, markedly decreased the AICc value of the

model compared with the model with time dependence alone

on recapture. For recapture, the assumption H0: r = 0 was

rejected (P-value <0�01) and the estimate of r (SD) was 1�708
(0�381). The assumption H0: q = 1 could not be rejected

(P-value = 1). Therefore, the estimate of r suggested a high

heterogeneity between pairs in recapture probability. In this

species, skipping reproduction is a common phenomenon

(Sanz-Aguilar et al. 2011). Because only breeding birds were

captured, sabbatical breeding periods taken by pairs may

create the observed between-pair heterogeneity in recapture

probability.

The estimate of survival probability did not differ substan-

tially between the model taking into account a pair effect on

recapture probability and the model not accounting for the

pair effect (Table 3, s = 0�82 vs. s = 0�81 respectively). On the

contrary, the estimates of recapture probability for each year

obtained when taking into account a pair effect (model 1,

Table 3, t+pair) were higher than those obtained without the

pair effect (model 2, Table 3, t+sex/pair). In Appendix S3, we

give details for implementing thesemodels in E-SURGE.

Table 2. Model selection for the Cory shearwater’s data. Fixed effects

considered: I, constant parameter and t, time effect. Random effects (in

italics): pair and sex; sex represents the level 1 of clustering, whereas

pair represents the level 2. Sex/pairmeans sex nested in pair; sex.pair is

equivalent to an individual effect. # Id. Par. is the number of identifi-

able parameters of themodel

Model Survival Recapture # Id. Par. Deviance AICc

1 i t+pair 9 1235�39 1253�59
2 i t+sex/pair 10 1235�39 1255�64
3 i t+sex.pair 9 1252�75 1270�95
4 i t 8 1258�55 1274�71
5 i+pair t 9 1257�45 1275�65
6 i+sex.pair t 9 1257�91 1276�11
7 i+sex/pair t 10 1257�35 1277�60
8 t t 13 1251�60 1278�01
9 i i 2 1287�71 1291�72
10 t i 8 1279�38 1295�54

Table 3. Comparisons of the estimates for parameters of the two-level

model (i.e. including a pair random effect, model 2 of Table 2) and the

standard model without random effect (model 4 of Table 2) fitted to

the Cory shearwater data. MLE stands for maximum likelihood esti-

mate, SE for standard error.r is the standard deviation of the pair ran-

dom effect

parameter

without random

effectMLE (SE)

with random

effectMLE (SE)

P2 0�597 (0�156) 0�749 (0�168)
P3 0�754 (0�043) 0�767 (0�060)
P4 0�790 (0�040) 0�839 (0�049)
P5 0�910 (0�026) 0�95 (0�021)
P6 0�862 (0�034) 0�922 (0�031)
P7 0�972 (0�019) 0�985 (0�011)
P8 0�844 (0�052) 0�893 (0�046)
s 0�814 (0�014) 0�822 (0�014)
r(pair) NA 1�708 (0�381)
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I LLUSTRATION 2

We assessed the influence of family structure on the level of

parent–offspring resemblance in dispersal propensity in a pat-

chy population of collared flycatchers (Ficedula albicollis),

using a family random effect. The collared flycatcher is a

small hole-nesting migratory passerine bird that readily

accepts to breed in artificial nest boxes, providing an easy

access to breeding data (Gustafsson 1989; Doligez, Gustafs-

son & P€art 2009). The data used here were collected on a

patchy population of collared flycatchers on the Swedish

island of Gotland (Gustafsson 1989; Doligez et al. 2004;

Doligez, Gustafsson & P€art 2009). In this population,

dispersal can easily be defined by a change of patch between

years. Dispersal status of each individual is therefore deter-

mined by comparing the patches of capture between years,

ignoring years when the individual was not captured

(see Doligez et al. 2004; Doligez, Gustafsson & P€art 2009

and Appendix S2 for discussions about the validity of this

definition). We considered here only females, whose capture

histories were built using three observations: 0, not encoun-

tered, 1, non-dispersing females (i.e. females caught in the

same patch on two successive capture occasions) and 2, dis-

persing females (i.e. females caught in two different patches

on two successive occasions). The first observation (i.e. at

age 0) was here the dispersal status of the mother; subse-

quent events were defined by the capture and dispersal status

of the female herself, see Doligez et al. (2012) and Appendix

S2 for more details on the data and CR models. We consid-

ered a multistate model with two states, ‘ND: non-dispersers’

and ‘D: dispersers’, which had the same structure as the AS

model. Transition probabilities to state ND and D measure

philopatry and dispersal probabilities, respectively, and we

explore the influence on these probabilities of the departing

state, i.e. the mother’s dispersal status (first transition) or the

female’s previous dispersal status (subsequent transitions).

Families have heterogeneous size (i.e. here number of

recruited sisters), from 1 to 4 with 519, 84, 12 and 2 families

respectively. Multistate GOF tests for the AS model (Pradel,

Wintrebert & Gimenez 2003) were conducted using program

U-CARE. A strong overdispersion was detected and was attrib-

uted to an age effect on survival (Table 4). We therefore con-

sidered either two age classes (1 to 2 years old vs. older,

denoted a2) or a full age effect (8 age classes, denoted a8) on

survival. In addition to previous dispersal state (denoted f),

we included the effect of age (two classes, first year vs. older)

on transition probabilities to estimate separately mother–

daughter resemblance (i.e. first-year transition) and further

individual consistency (i.e. transitions in older ages) in dis-

persal propensity (Doligez et al. 2012). A model with a full

age effect (8 age classes) on transitions did not perform better

(see Table 5). We added the random cluster effect (here fam-

ily effect) on the first-age transition probability (denoted a

(1)/family) only, to focus on the impact of data sibling struc-

ture on parent–offspring resemblance level. The data set

includes only one cluster level, the family and members of a

given brood (sisters) are considered fully dependent. We did

not account for a long-term (i.e. after 1 year) family effect

here because individual experience is likely to have a major

influence on breeding dispersal decisions (Doligez et al. 1999,

2002). Finally, we included the effects of time (denoted t)

and state (denoted to) on recapture probability (a constant

capture was also tested, denoted i). Therefore, the starting

AS model was denoted Sa8.f wa2.f.to Pto.t with an overdisper-

sion factor of 1�32.
Female survival decreased with age (Table 6), confirming

previous results obtained without accounting for individual

detection probability and suggesting actuarial senescence in

this population (Sendecka 2007). Survival at age 2 was also

higher for dispersing compared with non-dispersing females.

Furthermore, dispersing females were less likely to be detected

than non-dispersing females (Table 6); whether this lower

recapture rate results from higher breeding failure, lower mat-

ing probability and/or higher temporary emigration probabil-

ity in dispersers compared with nondispersers requires further

investigation (Doligez &P€art 2008).

Both the effects of mother dispersal status and family on

first-year transition (i.e. natal dispersal) probability were

retained in the model selected with the above structure for

survival and recapture probabilities (models 1 and 2,

Table 5, a2.f+a(1)/family and a2.f). The null hypothesis

r = 0 could not be rejected, (P-value = 0�07) using a LRT

test corrected for overdispersion by dividing the difference of

deviance by the estimated coefficient of overdispersion

[(5997�82-5994�96)/1�32] (Madsen & Thyregod 2010). Includ-

ing the family effect did not affect the survival estimates

(Table 6), but markedly increased natal dispersal probabili-

ties (i.e. transition probability to the dispersing state between

age 0 and 1): from 0�74 to 0�77 and from 0�79 to 0�83 for

daughters of non-dispersing and dispersing mothers respec-

tively (Table 6). The parent–offspring resemblance in

dispersal propensity was observed in both models (including

or not a family effect): in both cases, daughters of dispersing

mothers were more likely to disperse than daughters of

non-dispersing mothers, i.e. the transition probability to the

dispersing state was higher from the dispersing than the non-

dispersing state. However, the difference was slightly more

pronounced in the model accounting for the family effect

(Table 6, ΨND?D < ΨD?D = 1 - ΨD?ND: model without

family effect: 0�74 and 0�79; model with family effect: 0�77
and 0�83 respectively). After the first year, dispersing females

were more likely to disperse again than non-dispersing

females (0�35 vs. 0�20, respectively, Table 6), as previously

Table 4. Results of the different components of goodness-of-fit tests

for the general multistate model on the flycatcher data. df: number of

degrees of freedom

Test v2 df P-value

WBWA 40�819 37 0�306
3G.SR 607�435 45 <0�001
3G.SM 364�156 144 <0�001
M.ITEC 35�585 24 0�060
M.LTEC 29�530 19 0�058
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found in this population (P€art & Gustafsson 1989; Doligez

et al. 1999, 2012; Doligez, Gustafsson & P€art 2009).

Discussion

MODELLING DEPENDENCE AMONG INDIV IDUALS WITHIN

EACH CLUSTER

We developed a frequentist approach for CR mixed models

using two levels of data, the level of individuals belonging to a

cluster (level 1) and the level of clusters (level 2). This two-level

approach allows considering different types of random effects

with two levels. A cluster effect can also be considered where

individuals within a cluster are treated as fully dependent

(q = 1), fully independent (q = 0) or in between (�1 � q� 1)

or (0 � q� 1). Note that in our implementation we used a

standard GHQ, but did not, however, resort to the Laplace

method (Liu & Pierce 1994) or to the adaptive GHQ (Choquet

& Gimenez 2012). This is because these methods are only

efficient when either the number of capture occasions or the

size of the cluster is large.

BIOLOGICAL EXTENSIONS

In the Cory’s shearwater analysis, we used a two-level cluster-

ing analysis to estimate the ICC for pairs. Further extensions

of themodel include considering the pair structure when assess-

ing divorce rate, and the influence of the cause of divorce on

the variability of divorce rate. To do this, pairs should bemoni-

tored in the field to record the origin of divorce over time. In

the Collared flycatcher analysis, we used a one-level analysis to

estimate the intra-family variability on first-year transition

(i.e. level of parent-offspring resemblance in dispersal beha-

viour) probability. The full distinction between genetic and

environmental effects in the determinism of natal dispersal,

while accounting for individual detection probability, however,

requires the incorporation of full pedigree information into CR

models (Papa€ıx et al. 2010). Further extensions of the model

include considering bothmales and females, by using a sex ran-

dom-effect nested within families. This would allow testing for

sex differences on the variance component of

parent–offspring resemblance in dispersal behaviour.

L IMITATIONS

Our method allows modelling data structures with indepen-

dent clusters only. Several biological situations will, however,

not meet this assumption. When estimating the heritability

level of a given trait, accounting for the full multigenerational

pedigree of the population allowsmore refined analyses. In this

case, Vazquez et al. (2010) used the Laplace method, whereas

Papa€ıx et al. (2010) used a Bayesian approach with MCMC

to combine the pedigree and CR data. Other cases of non-

independence of clusters include times series and spatial depen-

dence with neighbours, for which sub-table 1C shows specific

correlation matrices. For example, cases of temporal or spatial

Table 6. Comparisons of the estimates for parameters of the one-level

model (i.e. including a family random effect, model 1 of Table 5) and

the standard model without random effect (model 2 of Table 5) fitted

to the collared flycatcher data. Note that survival at age 1 does not

appear in the table because it was fixed to 1. s,i and p,i mean survival

and recapture for state i. State ND = nondisperser, state D = dis-

perser. MLE stands for maximum likelihood estimate, SE for standard

error.r is the standard deviation of the family random effect

parameter

without random

effectMLE (SE)

with random

effectMLE (SE)

s,ND age 2 0�496 (0�048) 0�4973 (0�044)
s,D age 2 0�777 (0�030) 0�778 (0�030)
s age 3 0�571 (0�032) 0�571 (0�032)
s age 4 0�506 (0�042) 0�506 (0�042)
s age 5 0�441 (0�056) 0�441 (0�057)
s age 6 0�454 (0�086) 0�454 (0�086)
s age 7 0�251 (0�028) 0�251 (0�115)
s age 8 0�163 (0�172) 0�163 (0�166)
wD?ND age 1 0�215 (0�028) 0�173 (0�042)
wD?ND age>1 0�335 (0�023) 0�335 (0�023)
wND?D age 1 0�738 (0�024) 0�777 (0�040)
wND?D age>1 0�200 (0�036) 0�199 (0�036)
p,ND 0�973 (0�025) 0�972 (0�025)
p,D 0�581 (0�022) 0�582 (0�022)
r(family) NA 1�012 (0�4732)

Table 5. Model selection for the flycatchers data. Fixed effects: a2, two age classes; a8, eight age classes; f, dispersal state effect. a(1,3_8)+a(2).f thus
stands for eight age classes with an effect of state on age class 2 only; to, dispersal status effect; t, time effect. Random effect (in italics): family. a(1)/

familymeans that the random effect applies only to the first age class. # Id. Par. is the number of identifiable parameters of themodel

Model Survival Transition Recapture #Id. Par. Deviance QAICc

1 a(1,3_8)+a(2).f a2.f+a(1)/family to 16 5994�96 4573�91
2 a(1,3_8)+a(2).f a2.f to 15 5997�82 4574�04
3 a(1,3_8)+a(2).f a2.f to+t 38 5967�33 4598�21
4 a(1,3_8)+a(2).f a2.f to.t 61 5952�68 4635�49
5 a8 a2.f+a(1)/family i 14 6079�76 4634�09
6 a8 a2.f i 13 6086�03 4636�81
7 a8 a8.f i 23 6061�48 4638�59
8 a8 a2.f t 36 6058�89 4663�42
9 a2 a2.f i 7 6151�35 4674�17
10 a8 a2.f.t i 103 5982�90 4749�75
11 a8.t a2.f i 118 5954�77 4762�05
12 a f i 25 6234�25 4773�57
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autocorrelation (Johnson & Hoeting 2003; Saracco et al.

2010), where each unit is linked to its neighbours in time and/

or space,may be taken into accountwithTOEP(2). Alternative

algorithms to the GHQ should in this case be considered, as in

Zhu, Gu & Peterson (2007). Furthermore, we did not consider

here repeated measurements within subjects because the com-

putation of the marginal likelihood would have been intracta-

ble. Finally, field data in natural populations will very often be

structured with more than two levels, e.g. due to spatio-tempo-

ral aspects of data. For example, measurements can be nested

within individuals nested within clusters, but also individuals

can be nested within cluster 1 (e.g. family) nested within cluster

2 (e.g. location/year). Thus, further developments of taking

clusters into account are needed to address these situations.

Conclusion

This work provides a solid foundation for quantifying inter-

and intra-individual variation and will help to broadcast the

use of two-level models applied to CR data. Nevertheless, sig-

nificant issues of multilevel models applied to CR were not

addressed here. Therefore, our contribution should stimulate

similar efforts for developing efficient algorithms for further

frequentist analyses.
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