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Collisions between wildlife and vehicles represent a large source of mortality for many species. To imple-
ment effective protection zones, it is important to identify areas in which wildlife-vehicle collisions are
likely to occur. We used statistical models to derive an index of risk of co-occurrence between manatees
and boats. Our statistical models were used to predict the distribution of both manatees and boats, while
accounting for observer-specific detection probabilities. Models used aerial survey data and we found
that both environmental and temporal covariates influenced manatee and boat distributions. Moreover,

ji?r/ ;’ngislfve s the probability of detecting manatees varied substantially with the weather and among observers. To our
Boats v knowledge, this is the first time that manatee distribution is modeled as a function of key environmental

and seasonal covariates, while accounting for imperfect detection of manatees. We computed an index of
risk of co-occurrence by multiplying the probability of manatee occupancy by the expected boat density
and occupancy to identify areas where manatee-boat collisions are likely to occur. This analytical frame-
work emphasizes the importance of accounting for imperfect detection, and how modeling distribution
of both organisms and vehicles as a function of key covariates can help improve predictions of risk of col-
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Predictive models

Risk of collisions

Occupancy models

lisions. Risk of collision metrics can then be used in designing protection zones.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Wildlife-vehicle collisions can have a large effect on animal
populations. Car collisions for terrestrial species have been well
documented (Forman and Alexander, 1998) and are a large source
of mortality for many mammals (Allen and McCullough, 1976;
Gunson and Clevenger, 2003; Hell et al., 2005), birds (Hell et al.,
2005), reptiles (Langen et al., 2009), amphibians (Puky, 2006; Lan-
gen et al.,, 2009) and insects (Rao and Girish, 2007). Many large
marine animals, such as manatees (Aipanjiguly et al., 2003; Calle-
son and Kipp Frohlich, 2007), dugongs (Maitland et al., 2006),
North Atlantic right whales (Kraus, 1990; Ward-Geiger et al.,
2005; Fonnesbeck et al., 2008; Vanderlaan et al., 2008) and some
dolphins (Wells and Scott, 1997; Stone and Yoshinaga, 2000), as
well as green turtles (Hazel et al., 2007), suffer from strikes from
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both commercial and recreational watercraft. In the case of the
Florida manatee (Trichechus manatus latirostris), collisions with
boats are a primary source of mortality (Runge et al., 2007).

Protected areas with prohibited access or restrictions on vehic-
ular speed can reduce wildlife-vehicle collisions and decrease their
impact on wild animal populations (Allen and McCullough, 1976;
Calleson and Kipp Frohlich, 2007; Hazel et al., 2007). It has been
suggested that for manatees, boat speed limits in high-use areas
tend to reduce the risk of deadly collisions by providing the boat
operator and the manatee more time to avoid the collision, and
by reducing the severity of injuries when a collision does occur
(Calleson and Kipp Frohlich, 2007). Management policies regulat-
ing vehicle accesses and speeds can be controversial (e.g., because
of the burden imposed on boaters, Aipanjiguly et al., 2003); there-
fore, to most effectively determine where to create protection
zones, it is important to identify areas where wildlife and vehicles
are most likely to collide.

One approach to identify areas with the highest risk of collisions
has been to develop statistical models that use covariates to pre-
dict the distribution of the species of interest, and determine the
risk of co-occurrence with the observed distribution of vehicles.
For example, Fonnesbeck et al. (2008) developed a predictive mod-
el for whale distribution and used shipping traffic to evaluate the
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risk of vessel strikes under alternative routes. Here, we extend this
approach by developing models using covariates for both manatees
and boats to predict their distribution and compute the risk of co-
occurrence between them, with the ultimate goal of improving the
design of protection zones for wildlife. There are several benefits to
modeling distribution of manatees and boats, instead of simply
plotting observed locations of both. Firstly, scientific hypotheses
about the effect of environmental covariates or habitat characteris-
tics can be evaluated. This information can then be used to better
identify areas of high risk by linking them to specific risk factors
(e.g., presence of seagrass, or other important habitat characteris-
tics). Secondly, this approach can be helpful in making predictions
about areas that have not been surveyed, and thus help prioritize
survey areas.

We used sightings of Florida manatees recorded from aerial sur-
veys flown in Collier County, Florida, USA, to construct an occu-
pancy model (Royle and Kéry, 2007; Kéry, 2010). Similar surveys
were conducted over the same area to record boat sightings and
were used to construct abundance and occupancy models for boats
(Martin et al., 2005; Kéry, 2010). We accounted for detection prob-
ability in the manatee occupancy model. Although survey designs
that do not account for detection probability are cheaper, they
can lead to an underestimation of the probability of occupancy
and to spurious inference (Yoccoz et al., 2001; MacKenzie et al.,
2002; Kéry, 2010).

Environmental features and conditions can play a large role in
determining manatee distribution. Several studies (Axis-Arroyo
et al,, 1998; Jiménez, 2005; Olivera-Gémez and Mellink, 2005)
have reported an effect of bathymetry on apparent occupancy
(i.e., detection probability was not included) by manatees, and they
indicated that manatees were more likely to be seen near seagrass,
which is their main food resource. Axis-Arroyo et al. (1998) and
Jiménez (2005) also found a positive relationship between mana-
tee occupancy and water temperature. We quantified the effects
of the environment by using environmental and temporal covari-
ates in our manatee and boat models. We evaluated the influence
of the environment on manatee and boat distribution, as well as its
influence on manatee detection. We then calculated an index of
risk of co-occurrence between manatees and boats to identify areas
in which relative risk was high (Fonnesbeck et al., 2008; Vander-
laan et al., 2008). The information about risk of co-occurrence
could ultimately be incorporated into a decision theoretical frame-
work to help design manatee protection zones. Historically, mana-
tee speed zones have been put in place with the expectation that it
will likely be 10 years or more before the zones are re-evaluated.
Therefore, in most cases, the establishment of speed zones can be
viewed as a one time step decision process. Nevertheless, if zones
need to be revised, our analytical framework would still be rele-
vant but would likely require additional monitoring data.

2. Methods
2.1. Manatee distribution

2.1.1. Manatee aerial surveys

The Florida Fish and Wildlife Conservation Commission (FWC)
conducted nine manatee aerial surveys (where GPS tracks were re-
corded) along the southwest coast of Collier County between July
2007 and May 2008 (Fig. 1). Flights were conducted from a high-
winged Cessna 172 at an altitude of 250 m. Dual observers (two
observers working independently to detect animals) recorded the
location and the number of manatees they sighted within a 600-
m distance from the right side of the aircraft (Pollock et al.,
2006; Langtimm et al., 2011). In addition, information about sur-
vey conditions were recorded from the Automated Surface Observ-

ing Systems (ASOS) obtained from local airports. The plane
followed a standardized path over the survey area, and a GPS
was used to record the exact flight path. Data from nine of these
surveys were used in the analyses because no GPS track was re-
corded for the other surveys. GPS tracks were necessary to rigor-
ously evaluate the effects of key covariates on manatee
distribution.

2.1.2. Manatee data analysis

Non-detection of the species of interest during a survey does
not necessarily imply that the species is absent. An individual
can go undetected by an observer because it is not available to
be seen (e.g., a manatee resting on the bottom in turbid water);
alternatively, an individual can be present and available to be de-
tected by the observer, but for other reasons, is not observed (Pol-
lock et al., 2006; Edwards et al., 2007; Fonnesbeck et al., 2009;
Langtimm et al., 2011). Occupancy models can be used to estimate
the probability of occurrence (/) of a species while accounting for
detection probability (p) (MacKenzie et al., 2003, 2006). In the con-
text of our study, ¥ is the probability that site i is occupied by at
least one manatee during survey t, whereas p;; is the probability
that at least one manatee is detected at site i during survey t, given
that it is present and available for detection. The input data to esti-
mate ;; and p;; consist of vectors of Os and 1s (or encounter histo-
ries) for each site, where 1 indicates that at least one manatee was
detected and 0 indicates that no manatees were detected. If multi-
ple visits are conducted, it is possible to simultaneously estimate
Wi and p;, in this case p; also accounts for availability. The key
assumption in estimating y/;; and p;; is that the time between visits
is sufficiently short to assume that the state of occupancy remains
the same between visits (i.e., the site is assumed to be “closed”).
Hereafter, we refer to these short visits as passes, and in our proto-
col the time between passes was less than 30 min. We also con-
ducted multiple surveys at each site; the time between these
surveys was more than 10 days (sites are not assumed to be
“closed” among surveys). This protocol corresponds to a typical
multiseason survey design (MacKenzie et al., 2006). Thus, repeat
passes were used to estimate p;, whereas repeat surveys were used
to model y/;; as a function of temporal covariates. Because this was
a pilot study, there were not enough repeated passes to accurately
estimate p;,; instead, we used observations from the first pass from
both observers in lieu of observations from two different passes.
This approach allowed us to estimate the probability of detection
associated with each observer, given that manatees were available
for detection. To create site encounter histories, we overlaid a grid
(cell size, 1000 m x 1000 m) (Fig. 1) onto the survey area, defined
each cell as a site, and assigned each cell a 1 if at least one manatee
was detected by the observer at a site; otherwise 0O was assigned.
For instance, for site i during survey t, the encounter history
“01”, meant that the first observer did not detect any manatees,
and the second observer detected at least one manatee.

2.1.3. Manatee occupancy covariates

We modeled manatee occupancy as a function of key environ-
mental covariates: bathymetry, distance to seagrass, distance to
developed areas, and seasons.

Bathymetry is believed to influence manatee distribution (Axis-
Arroyo et al., 1998; Jiménez, 2005; Olivera-Gémez and Mellink,
2005). Using a GIS (ESRI ArcGIS version 9.3.1.), we partitioned
bathymetric data (NOAA National Geophysical Data Center, U.S.
Coastal Relief Model; http://www.ngdc.noaa.gov/mgg/coastal/
crm.html) into 1-m depth bin categories. The mean depth value
of each category was used in our models; tidal fluctuation was
not taken into account, which has the potential to fluctuate up to
1 m from high tide to low tide in Southwest Florida. The bathymet-
ric data that we used generally correspond to mean lower low
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Fig. 1. Predicted index of risk of co-occurrence between manatees and boats reported on the study area (annual mean). Greater index values correspond to greater risk of co-
occurrence (darker shades). Inset: map of the state of Florida; star indicates the location of surveys flown in Collier County. The risk of co-occurrence has been computed with

the occupancy values for the boats.

water (MLLW), though some source data were in NAVD88. In the
Coastal Relief Model (CRM), the bathymetry data are not estab-
lished in a common vertical datum because the difference between
the MLLW and NAVDA88 is less than the vertical accuracy of the
CRM, which should be considered to be no less than one meter.
The depths used in our study area ranged from 0.5 m to 6.5 m
(i.e., the deepest depth category was 6.00-6.99 m). When there
were several depth categories within the same cell, we chose the
depth that covered the largest area within that cell. Results related
to the bathymetry covariates should be interpreted with caution

for at least three reasons. First, the size of the cells was
1000 m x 1000 m, and depth can vary substantially within a cell.
Secondly, the fact that we used a composite data source created
from several datasets may have created additional noise. Thirdly,
tide was not accounted for.

Manatees feed on seagrass; therefore, their distribution is likely
to be influenced by this natural resource (Axis-Arroyo et al., 1998;
Jiménez, 2005; Olivera-Gémez and Mellink, 2005). Seagrass bed
locations were obtained from Collier County Environmental Ser-
vices (http://www.colliergov.net/). Using a GIS, we calculated the
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distance from the midpoint of each cell (i.e., site) to the edge of the
closest seagrass bed. The distances ranged from 0 m (i.e., the sea-
grass bed is in the cell) to 7031 m.

We hypothesized that manatees tend to avoid areas that have
been extensively developed. To evaluate this covariate, we created
polygons to distinguish developed areas from undeveloped areas
(based on U.S. Geological Survey 2004 Digital Orthophoto Quarter
Quads). We considered large tracts of land, such as parks or wet-
lands, which had minimal or no human development at the time
of our survey, as undeveloped land. We calculated the distance
to the closest developed land by calculating the distance from
the midpoint of each cell to the nearest land classified as a devel-
oped area. Distances ranged from 0 m to 8474 m.

Manatees tend to avoid cold water, as they get physiologically
stressed at temperatures less than about 20 °C (Irvine, 1983), and
seek warm water refuges when water temperature drops (Deutsch
et al., 2003). Therefore, we included a “season” covariate to ac-
count for variations in manatee distribution due to temperature
changes among seasons. This covariate consisted of two categories,
warm-season: March to November (average temperature: 78.3 de-
gree F [SD =5.6]); and cold-season: December to February (68.3
degree F [SD = 3.6], temperatures were obtained from Naples [Col-
lier County], FL, for the period of record from 6/1/2007 to 5/31/
2008, internet source: http://www.sercc.com/cgi-bin/sercc/cli-
MAIN.pl?fl6078). Six surveys were conducted during the warm
season, and three were conducted during the cold season. Although
some warm water refuges are man-made sources (e.g., power
plant), there was no such manatee refuges in our study area, nei-
ther natural ones (e.g., river).

A 600-m distance off the right side of the aircraft’s path repre-
sented the area surveyed by the observers. The proportion of water
area covered by the plane’s path for each cell during each survey
was included as a covariate.

2.1.4. Manatee detection covariates

We modeled the probability of manatee detection using covar-
iates: bathymetry, wind speed, weather, and observer effect.

Pollock et al. (2006) showed that the probability of detecting
manatees was negatively related to water depth (Pollock et al.,
2006). Thus, we predicted a negative relationship between
bathymetry and detection probability. The bathymetry covariate
was the same as the one described in Section 2.1.3. The fact that
some covariates could potentially affect occupancy and detection
makes it especially important to account for imperfect detection
when estimating occupancy (MacKenzie et al., 2006).

Wind speed can also negatively affect visibility. Wind speed in
knots (kts) was recorded by the observers from the nearest ASOS
during each survey. Speeds ranged from 5 kts to 10 kts. Weather
conditions can affect water surface and overall visibility and can
impede detection. For each survey, we assigned a number ranking
to the overall weather conditions recorded by the observers during
the survey: excellent: 4, very good: 3, good: 2 and fair: 1. If the
weather rankings were different between observers, we used the
mean of the two ranks.

Not all observers conducting surveys have the same skills to de-
tect manatees from a plane, and their ability can affect manatee
detection. Four observers participated in the surveys (two observ-
ers at a time surveying the entire study area during each survey),
and we estimated detection probability for each observer by mod-
eling it as a function of four groups (i.e., one group per observer, in
a fixed effect model). The observers were then ranked based on the
estimates from the model. A second approach was to create a con-
tinuous covariate that ranged from 1 to 4; each observer was as-
signed a value that corresponded to his/her rank based on the
first approach to estimate detection probability. For instance, the
observer with the lowest estimate of detection probability based

on the first approach was assigned a value of 1, whereas the obser-
ver with the highest estimate was assigned a value of 4. The benefit
of the second approach is that it required the estimation of only
one coefficient parameter and one intercept parameter to account
for the observer effect on detection, whereas treating the observer
effect as four groups required the estimation of four parameters.
Thus, the second approach allowed us to save degrees of freedom
for evaluation of additional biological hypotheses. If more observ-
ers had been involved (e.g., 10) it would have been possible to treat
the observer effect as a random effect. In the latter case, treating
the observer effect as a random effect would be more efficient than
using a fixed effect to account for variation in detection due to
observers’ skills in detecting manatees.

2.1.5. Manatee model

Detection and nondetection data for each cell i by observer j
during the survey t was assumed to follow a Bernoulli distribution:
Yiie ~ Bernoulli (z; x pjic), where z; is the state of occupancy in cell i
during survey t and py; is the detection probability by observer j.
We defined the occupancy state as z; ~ Bernoulli (), where ;;
is the occurrence probability (i.e., the probability that the site is
occupied by at least one individual) (Kéry, 2010). We assumed both
the occurrence and detection probabilities to be independent be-
tween individuals (Kéry, 2010).

The most general model (i.e., the model that included all the
covariates considered in our study) was defined as:

logit(y;,) = oo + &1 x bat; + oz x bat? + o3 x dseag; + oy x Seas;

+ a5 x ddvlp; + o x areay
logit(p;) = Bo + 1 x bat; + p, x weath, + 5 x wind, + B, x obs;;

where bat: bathymetry, dseag: distance to the closest seagrass bed,
seas: season, ddvip: distance to the closest developed land, area:
water area covered by the plane’s path, weath: weather, wind: wind
speed, and obs: observer rank. The covariates (x;) were standard-
ized with the following formula:

Xir - X
sd(xi)

where X is the mean of x;; and sd(x;,) is the standard deviation of x;.
We tested the relevance of the covariates we chose in our hypoth-
eses with a model selection Bayesian method by adding indicator
variables as parameters as described in Kuo and Mallick (1998).
We calculated the probability of each of the models that we consid-
ered for our analysis given the data (i.e., the posterior probability).
The model with the greatest posterior probability was the one that
included the most relevant covariates. First, we ran this model
selection method to choose the relevant covariates explaining
detection probability (16 models tested); then, we tested the rele-
vance of the covariates for the occupancy probability (64 models
tested) (Lebreton et al., 1992). We also applied a Pearson correlation
test to look at any possible correlation between covariates, but we
considered only the correlations that were meaningful biologically.
Parameters of the covariates for the best model selected (i.e.,
including only the relevant covariates) were estimated with a
Bayesian approach. We also calculated the predicted estimates of
Y and its associated uncertainty.

2.2. Boat distribution

2.2.1. Boat aerial surveys

Mote Marine Laboratory collected counts of boats during nine
surveys conducted in Collier County from December 2006 to
November 2007 (seven surveys were conducted during our de-
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fined-warm period and two surveys were conducted during our
defined-cold period). The surveys were mostly evenly spaced in
time and covered most of the study area. More details about the
survey method can be found in Gorzelany (2008). We used the
same grid as for the manatee data, and overlaid the boat sighting
data to calculate the number of boats seen per cell per survey.
We removed all sightings of airboats, sailboats, kayaks, canoes
and personal watercraft from our data set to focus primarily on
boats most likely to cause serious injury or death to manatees.
Although personal watercraft and airboats are less likely to cause
injuries than other types of watercraft, they are subject to speed
regulation and should probably be considered for management
purposes.

2.2.2. Boat density covariates

We modeled boat density as a function of several environmen-
tal covariates: distance to the shoreline and distance to the closest
developed land; and temporal covariates: season. We also included
the proportion of the cell’s area that included water as a covariate.
We calculated the distance from the midpoint of each cell to the
closest shoreline. Distances to the shoreline ranged from 0 m to
2673 m.

2.2.3. Boat density model

We modeled boat distribution as a zero-inflated Poisson (ZIP)
distribution because of the large number of zero counts in our data
(i.e., sites unoccupied by boats) (Martin et al., 2005). We assumed
perfect detection probability of boats (i.e.,, equal to 1) because
boats are easily counted and detected from a plane flying at 250-
300 m and surveys were recorded by a video camera. Counts of
boats in each cell i during survey t was assumed to follow a ZIP dis-
tribution: C;, ~ Poisson (z;; x /;). We defined the occupancy state of
the site as z;; ~ Bernoulli (Q2;;), where ;; is the probability that site
i is occupied by at least one boat during survey t. The most general
model to explain the number of boats per cell (parameter ;) was
defined as:

log(2ir) = ¢ + ;1 x dshor; + vy, x ddvlp; + 75 x seas; + y, x areq;

where dshor: distance to the closest shoreline and area: proportion
of water in the cell.

2.2.4. Boat occupancy model

As an alternative to the boat density model, we also developed a
boat occupancy model. In this case, instead of modeling the num-
ber of boats per cell, we modeled the occupancy per cell, i.e., a cell
that included at least one boat was considered occupied. Detection
for boats was assumed to be equal to 1. The covariates tested for
the occupancy model were the same as for the density.

2.3. Software and computational analyses

Both manatee and boat models were computed in program R
(version 2.12.1) and estimated with WinBUGS (version 1.4) using
the package R2WinBUGS. We used the Markov chain Monte Carlo
(MCMC) simulation method, running three different chains, each of
15,500 iterations where the first 12,000 iterations were removed
(burn-in). The initial values for the parameters were picked ran-
domly from their priors, which were defined as uniform distribu-
tions (Kéry, 2010). We wused the Brooks-Gelman-Rubin
diagnostic (R-hat, Gelman et al., 2004), to assess the chains’ con-
vergence. We assessed the fit of the models with posterior predic-
tive checks (Gelman et al., 2004; Kéry, 2010).

2.4. Index of risk of co-occurrence

2.4.1. Index based on the boat density model

We estimated an index of risk of co-occurrence between boats
and manatees based on the co-occurrence of manatees and boats.
This index was computed by multiplying the probability of mana-
tee occupancy for each cell by the mean expected number of boats
for these cells for the same season (Fonnesbeck et al., 2008; Van-
derlaan et al., 2008). As an example, we computed the index of risk
of co-occurrence for our study area as an average over a year. Using
a GIS, we created a map showing the values of the index of risk of
co-occurrence and identified where risk was greatest (Fonnesbeck
et al., 2008; Vanderlaan et al., 2008). Our models can also be used
for predictive purposes. For instance, given some information
about relevant covariates for a particular site, one can estimate
the probability of occurrence of manatees and the density of boats
for that site, even if the site was not surveyed; however, the site
would have to be part of the area of inference.

2.4.2. Index based on the boat occupancy model

This index was similar to the one described above, except that it
was obtained by multiplying boat occupancy with manatee
occupancy.

3. Results
3.1. Manatee model

The detection model that received the most support from the
data assumed an effect from the weather, and from the observer
identity on manatee detection (posterior probability was 0.60,
Table A1). The MCMC chains for this model appeared to have
reached convergence (R-hat<1.1); and the posterior predictive
check did not indicate lack of fit (Bayesian p value: 0.45). The dis-
tance to the closest seagrass bed, the distance to the closest devel-
oped land, the season, and the water area covered by the plane
path were the covariates that received the most support from
our data to explain manatee occupancy (posterior probability
was 0.87, Table A2). Although, the distance to the closest seagrass
bed was positively correlated with the distance to the closest
developed land, the level of correlation was weak (Pearson’s prod-
uct-moment correlation test, r=0.13, 95% CI (0.04-0.23)). Covari-
ate parameter estimates for the best model are given in Table A3
with uncertainty (95% CI).

For the nine surveys, the average detection probability was
0.59, 95% CI (0.48-0.70) based on the MCMC approach, and the
average estimate of occupancy probability was 0.10, 95% CI
(0.06-0.17). The average estimate of the occupancy probability
for the surveys conducted during the cold period was 0.05, 95%
CI (0.03-0.09), and for surveys conducted during the warm period
was 0.13, 95% CI (0.08-0.19).

By treating the four observers as four groups (as a fixed effect,
using the first approach described in Section 2.1.4), the estimates
of detection probabilities for the four observers were 0.43, 0.51,
0.75 and 0.79, whereas they were 0.44, 0.59, 0.73 and 0.83 when
treating the observer effect as a continuous covariate (using the
second approach; these values were obtained with our best model
and by assigning a mean value of 0.5 to the weather covariate).
Weather was an important variable affecting detection; this was
in contrast with bathymetry and wind speed, which did not seem
to affect detection probability. This could be the result of surveys
being conducted on days with light wind and because Collier
County contains mostly shallow areas, i.e. there was little variabil-
ity in the values for these two covariates (e.g., mean depth:1.24 m,
SD =1.30 m).
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3.2. Boat models

3.2.1. Boat density model

The model that included distance to shoreline, distance to the
closest developed land and proportion of water in the site received
the most support from the data (posterior probability was 0.86,
Table B1). Parameter estimates of the covariates are available in
Table B2. Based on the best model, the average number of boats ex-
pected per cell was 2.53, 95% CI (2.32-2.77). According to the
parameter estimates of the covariates, boat density decreased with
distance from the shoreline. Boat density also decreased with dis-
tance to the closest developed land. Our data did not provide sup-
portive evidence of an effect of the season on boat density. The
MCMC chains for the boat density model appeared to have reached
convergence (R-hat < 1.1). However, the posterior predictive check
provided significant evidence of lack of fit (Bayesian p value: 0.00).
Thus, the results of the boat occupancy model should be inter-
preted with caution. As an alternative to the boat density model
we also considered a boat occupancy model, for which there was
no evidence of lack of fit.

3.2.2. Boat occupancy model

The model that included distance to shoreline and proportion of
water in the site received the most support from the data (poster-
ior probability was 0.95, Table C1). Parameter estimates of the
covariates are available in Table C2. The data did not provide sup-
portive evidence of an effect of the season and distance to devel-
oped areas on boat occupancy. The MCMC chains for this model
appeared to have reached convergence (R-hat < 1.1); and the pos-
terior predictive check did not indicate lack of fit (Bayesian p value:
0.34).

3.3. Index of risk of co-occurrence

3.3.1. Index based on boat density model

The mean annual value for the index of risk of co-occurrence be-
tween manatees and boats was 0.30 (SD = 0.35) with a minimum
<0.01 and a maximum of 2.73. For the cold period, the mean value
was 0.15 (SD =0.19); for the warm period, the mean value was
0.35 (SD = 0.40). Because manatee occupancy was greater during
the warm period, the risk of co-occurrence increased during that
period. By mapping the mean values of the index of risk of co-
occurrence calculated over a year (Fig. D1), we located where this
risk was the greatest.

3.3.2. Index based on boat occupancy model

The map of mean annual values of the index of risk of co-occur-
rence based on the boat occupancy model (Fig. 1) looked similar to
the one obtained based on the boat density model (Fig. D1). The
mean annual value for the index of risk of co-occurrence between
manatees and boats was 0.04 (SD = 0.04), with a minimum <0.01
and a maximum of 0.23. For the cold period, the mean value was
0.02 (SD=0.02); for the warm period, the mean value was 0.04
(SD = 0.04).

4. Discussion
4.1. Manatee occupancy

Manatee occupancy models were used to estimate the effect of
variables of interest but also to make predictions about the proba-
bility of manatee occupancy as a function of environmental and
temporal covariates. Based on these analyses, distance to seagrass
appeared to be an important environmental covariate that influ-
enced the distribution of manatees. This was consistent with pre-

vious studies on this species, all of which found a positive
relationship between manatee observations and presence of vege-
tation (Axis-Arroyo et al., 1998; Jiménez, 2005; Olivera-Gémez and
Mellink, 2005). However, our study represents the first attempt to
predict probability of occupancy of manatees as a function of sea-
grass availability while accounting for imperfect detection due to
observer bias (Fig. 2).

There was some evidence of a negative relationship between
distance to developed areas and manatee occupancy, which would
suggest that manatees did not avoid developed areas. This relation-
ship may be explained by the fact that the distance to the closest
seagrass bed was positively correlated with the distance to the
closest developed land (i.e., the seagrass is located near the devel-
oped areas for this specific study area), and as manatees are located
close to the seagrass patches, they are also near the developed
areas. Developed areas can also be a source of freshwater for
manatees.

As predicted, manatees avoided our study area during the cold
season. Collier County contains only a few warm water refuges, but
these areas were not located in our study area and therefore were
not covered in the surveys. Manatees may have been present at
these refuges or may have left county waters during the cold
periods.

We did not find an effect of bathymetry on manatee distribu-
tion, which may be explained by the lack of bathymetric variation
in the areas that were surveyed. Although bathymetry appeared to
be a useful covariate to consider a priori, our results related to this
covariate should be interpreted with caution for several reasons.
Firstly, the size of the cells was up to 1000 m x 1000 m, and depth
can vary substantially within a cell; thus our approach of using the
average depth category of the largest area within the cell would
not capture potential variations. Secondly, the bathymetry infor-
mation available was a composite of several data sources. Finally,
variation in depth due to tides was not accounted for.

4.2. Accounting for manatee detection probability

It is possible to model occupancy while accounting for imper-
fect detection by following a robust design, for example, by con-
ducting repeated visits or passes at each site (MacKenzie et al.,
2003). These passes need to be close enough in time to meet the
closure assumption at the site. With enough repeat passes, it is
possible to estimate total detection probability, which includes
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Fig. 2. Relationship between manatee occupancy probability and distance to the

closest seagrass bed. The bold line represents the mean value of the relationship,
and the two light lines represent the 95% CI.
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the probability that manatees are available for detection, and the
probability that observers will detect manatees given that mana-
tees are available. Because our study did not include enough sites
with repeated passes, we decomposed detection probability into
its components and focused on observer-specific detection proba-
bilities. Therefore, instead of using repeat passes, we treated the
observations made simultaneously by the two observers as passes.
Imperfect detection due to observer bias is a source of error that is
specific to each individual observer. If an observer left the monitor-
ing program (e.g., cannot conduct any more surveys), it would not
be possible to know his/her contribution to total detectability, un-
less the study was specifically designed to estimate this source of
error. This is in contrast to the probability of availability, which
can be estimated from other sources of information (e.g., Pollock
et al. (2006) used time-depth-recorder information to correct for
probability of availability) and is less likely to change over time
(e.g., manatees are likely to maintain the same rate of surfacing
from year to year). Four observers participated in the surveys,
and we showed that detection probability varied substantially
among them (0.43-0.79). To improve the precision of our esti-
mates, we included observer detection probabilities as a continu-
ous covariate. The estimates of detection probabilities obtained
with this approach were consistent with those obtained with a
more complex model (e.g., 0.44-0.83). This second approach al-
lowed us to focus on evaluating more interesting biological
hypotheses (e.g., by reducing the number of parameters related
to observers’ detection and therefore being able to include more
parameters related to occupancy in the model).

4.3. Boat models and index of risk of co-occurrence

We computed two indices of risk of co-occurrences. The first
one was obtained by multiplying the probability of manatee occu-
pancy by the expected boat density at each site, whereas the sec-
ond was derived by multiplying probability of manatee
occupancy by the probability of boat occupancy. Modeling boat
density and occupancy allowed us to evaluate hypotheses about
potential factors that drive these variables. The boat density model
that appear to be best supported by the data included distance to
shoreline, distance to the closest developed land and proportion
of water in the site, whereas the boat occupancy model with the
most support from the data only included distance to shoreline
and proportion of water in the site. We note that there was evi-
dence of lack of fit for the boat density model, which was evaluated
with a posterior predictive check. Therefore, the results for the boat
density model and associated risk of co-occurrence should be
interpreted with caution. In contrast, there was no evidence of lack
of fit for the boat occupancy model, thus in our case the index of
risk of co-occurrence based on the boat occupancy model appears
more reliable. Interestingly, the risk maps obtained from both
models looked similar (Figs. 1 and D1). These indices of mana-
tee-boat co-occurrence could be viewed as surrogates of risk of
collision, indeed, as the index value increases, the risk of collision
between boats and manatees should increase (Fonnesbeck et al.,
2008; Vanderlaan et al., 2008). One of the limitations of our indices
is that they are based on manatee occupancy (i.e., whether a cell is
occupied) rather than manatee density (i.e., number of manatees
per cell); therefore the index of collision for an occupied cell would
be the same no matter how many manatees were present in the
cell. This, of course, is also a limitation of the index of risk of co-
occurrence based on the boat occupancy model. Note, however,
that several studies have indicated a positive relationship between
occupancy and density (e.g., MacKenzie et al., 2006); in fact, as
noted earlier, the risk maps based on the boat occupancy and boat
density models are similar (Figs. 1 and D1). In addition, this index
does not account for increased risk due to the three-dimensional

configuration of the areas, the behavior of manatees (foraging/rest-
ing or moving), or the boat (anchored or moving). For instance,
risks of collisions may increase in narrow and shallow canals; in
addition, the surfacing behavior of manatees may vary, depending
on habitat type. Thus, it would be worth considering these factors
to improve our index. Nonetheless, our index should be useful in
the design of manatee protection zones. Identifying areas where
the risk of collisions is high is important for improving the design
of such protection zones. The data analyzed for this study were
part of a pilot study. Because this study design is relatively new,
the data set available is limited, and therefore, the results should
be interpreted with caution when considering management appli-
cations. Nevertheless, the reliability of the models and the rele-
vance to management will increase as more aerial survey data on
boats and manatees become available. Indeed, the integrated
Bayesian approach that we have described can readily integrate
new information in order to improve the performance of our
models.

4.4. Future studies

Our work provides insights on how to improve the design of fu-
ture aerial surveys and analyses to predict risk of collisions. First,
focusing on manatee density (i.e., accounting for the number of
manatees per site), rather than manatee occupancy could improve
the quality of the index. N-mixture models could be considered for
these types of analyses, although non-independence of detection
remains a problem for the application of these models to aerial sur-
vey data for manatees (Martin et al., 2011). Second, estimates of
occupancy or densities of manatees should also account for proba-
bility of availability, not just the probability of imperfect detection
due to observers. Repeat passes could be used to account for this
source of variation, but there is a trade-off between spatial extent
of area covered, the number of passes, and cost. By collecting
covariates affecting the probability of availability (e.g., turbidity,
which were not available for the current study), we should be able
to account for probability of availability from other sources of data
without necessarily increasing the number of passes. For instance,
FWC is testing a methodology for estimating statewide abundance
of manatees, and during these surveys, multiple passes are con-
ducted at each site, and turbidity is recorded. It will be possible
to construct a model that will integrate the relationship between
turbidity and probability of availability elucidated in these surveys
into the analyses of the surveys that we present in this study (i.e.,
with a double-observer protocol, but without repeat passes). An
alternative is to use artificial manatee models and to obtain dive
profiles of manatees with time depth recorders to determine zones
of detectability under ranges of conditions (e.g., depth, turbidity)
encountered during aerial surveys (Pollock et al., 2006). Note that
in both cases, a double-observer protocol is still necessary for these
types of surveys to decompose the probability of detection into the
probability of availability of the individual and the probability of
detection due to the observer. Collecting boat and manatee data
simultaneously with two planes (e.g., one dedicated to boat obser-
vations and the other to manatee observations) could potentially
improve the index of risk of co-occurrence. On the other hand, hav-
ing the same observer collect information on boats and manatees
at the same time could be distracting and would probably reduce
detection of manatees. In any case, the approach that we described
does not require the information on boats and manatees to be col-
lected simultaneously. Finally, future development of index of co-
occurrence could also consider the spatial configuration (e.g., nar-
row passes versus wide-open water; shallow and deep areas); boat
types (e.g., size), boat speed, manatee and boater behavior. These
improvements over traditional surveys come with an added cost,
but not properly accounting for important sources of errors in
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monitoring data can lead to spurious inference (Yoccoz et al., 2001;
MacKenzie et al., 2002; Kéry, 2010).

5. Conclusion

Despite some limitations and the potential for improvement,
our study provides the first model for predicting an index of risk
of co-occurrence between manatees and boats based on aerial sur-
vey data while accounting for detection probabilities due to
observers. The analytical framework will also be useful in the de-
sign of aerial surveys that aim to predict risk of co-occurrence in
other systems and for other species when detection is not perfect.
This approach could be applied to estimate wildlife-vehicle co-
occurrence risk for other systems (including terrestrial systems,
especially for species surveyed by air), and help in the design of
protection zones.
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Appendix A

See Tables A1-A3.

Appendix B

See Tables B1 and B2.

Table A1

Posterior probability for models tested with different covariate combinations to
explain the manatee detection probability. The estimates were made by the model
selection Bayesian method. The other 12 models (16 models were tested) are not
shown in the table, because their probability was <0.001.

Model tested Posterior
probability
Weather + Observer identity 0.60
Weather + Observer identity + Bathymetry 0.34
Weather + Observer identity + Wind speed 0.05
Weather + Observer identity + Bathymetry + Wind 0.01
speed
Table A2

Posterior probability for models tested with different covariate combinations to
explain the manatee occupancy probability. The estimates were made by the model
selection Bayesian method. The other 60 models (64 models were tested) are not
shown in the table because their probability was <0.001.

Model tested Posterior
probability
Distance to seagrass + Distance to developed 0.87
land + Season + Water area covered
Distance to seagrass + Distance to developed 0.09

land + Season + Water area covered + Bathymetry
Distance to developed land + Season + Water area covered  0.02
Distance to seagrass + Season + Water area covered 0.02

Table A3
Parameter estimates from WinBUGS for the relevant covariates explaining the
occupancy probability and the detection probability of manatees.

Covariate Parameter estimate 95% CI
Weather 0.85 [0.48; 1.20]
Observer identity 0.57 [0.29; 0.85]
Distance to seagrass -0.49 [-0.76; —0.25]
Distance to developed land -0.55 [-0.87; —0.28]
Season 0.91 [0.47; 1.37]
Water area covered 0.70 [0.38; 1.04]

Table B1

Posterior probability for models tested with different covariate combinations to
explain the expected boat density. The estimates were made by the model selection
Bayesian method. The other 14 models (16 models were tested) are not shown in the
table as their probability was <0.001.

Model tested Posterior

probability

Distance to shoreline + Distance to developed land + Water  0.86
area covered

Distance to shoreline + Distance to developed land + Water  0.14
area covered + Seasons

Table B2
Parameter estimates from WinBUGS for the relevant covariates explaining the
expected boat density.

Covariate Parameter estimate 95% ClI
Distance to shoreline -1.07 [-1.23; —0.91]
Distance to developed land -0.10 [-0.14; —0.07]
Water area 0.91 [0.84; 0.98]

Table C1

Posterior probability for models tested with different covariate combinations to
explain the expected boat occupancy. The estimates were made by the model
selection Bayesian method. The other 13 models (16 models were tested) are not
shown in the table as their probability was <0.001.

Model tested Posterior
probability

Distance to shoreline + Water area covered 0.95

Distance to shoreline + Water area covered + Season 0.02

Distance to shoreline + Water area covered + Distance to 0.02
developed land

Table C2
Parameter estimates from WinBUGS for the relevant covariates explaining the boat
occupancy probability.

Covariate Parameter estimate 95% Cl
Distance to shoreline -7.02 [-8.30; —5.83]
Water area covered 3.39 [3.00; 3.78]

Appendix C

See Tables C1 and C2.

Appendix D

See Fig. D1.
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Fig. D1. Predicted index of risk of co-occurrence between manatees and boats reported on the study area (annual mean). Greater index values correspond to greater risk of
co-occurrence (darker shades). Inset: map of the state of Florida; star indicates the location of surveys flown in Collier County. The risk of co-occurrence has been computed
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